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Abstract

Force measurements on and within single macromolecular complexes utilizing techniques such as atomic force
microscopy, optical trapping, flexible glass fibers, and magnetic beads provide a rich source of quantitative data on
biomolecular processes. Stochastic thermal fluctuations, an undesirable source of noise in macroscopic biochemical
experiments, are an essential element of these sensitive and novel experiments. With the proper analysis, a great deal of
information can be gleaned from measurements of these fluctuations. A quantitative framework for analyzing such
measurements, based on Kramers’ theory of molecular dissociation, is developed. The analysis reveals the kinetic origin and
stochastic nature of the measurements. This framework is presented in the context of protein-ligand separation with the
atomic force microscope. © 1997 Elsevier Science B.V.
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1. Introduction

The state of the art for studying biological macro-
molecular interactions in aqueous solution has
reached a stage where the behavior of the molecules
and molecular complexes themselves can be individ-
ually observed. Studies of single biomolecules have
already provided a rich source of information on
their behavior, interactions, and the mechanisms by
which they operate, as testified by the pioneer stud-
ies on single channel proteins in membranes [1,2]. At
the single-molecule level, the inevitable thermal fluc-
tuations in the measurements are no longer an unde-
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sirable source of noise but are rather an integral and
valuable part of the experimental data. The process
of obtaining information in these delicate experi-
ments frequently requires stochastic analysis of
seemingly random results from repeated experimen-
tal measurements [3,4].

Several techniques have been developed in recent
years to measure the force involved in interactions
between individual macromolecules or within single
macromolecular complexes [5-8]. In a set of recent
experiments, the atomic force microscope (AFM) has
been put to novel use in studying the bonding force
within a single protein-ligand complex [9,10] or
between complementary strands of DNA [11,12].
The force required to rupture the bond between the
ligand and the protein has been measured directly in
these experiments. The AFM probe, or cantilever, is
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Fig. |. Top: schematic overview of protein-ligand complex sepa-
ration with the AFM. Bottom: one-dimensional model.

attached to the ligand and exerts a disruptive force
upon the bond, while the protein is held fixed (Fig.
1). The base of the probe is controlled by a piezo-
electric motor which increases the force exerted on
the ligand by moving the probe away from the
substrate, until the bond is broken. In each measure-
ment, the positions of both the tip and the base of the
probe are recorded. Once calibrated, the distance
between the tip and the base measures the external
force being exerted on the molecule. Usually the
probe can be treated as a Hookean spring with a
simple harmonic potential. The harmonic potential-
well and the intermolecular interaction constitute a
double-well potential in which protein-ligand disso-
ciation takes place.

The force exerted when the bond is broken — the
jumping-off force of the microscope — is sometimes
naively interpreted as the ‘bond rupture force’. How-
ever, the protein-ligand dissociation forced by the
AFM occurs in a stochastic fashion due to the ther-
mal motion of the pair in solution. A unique, mea-
surable quantity which can be defined as a “bond
rupture force’ does not exist. In any single experi-
ment, the bond may break at any point over a range
of forces which are a function of the probe velocity.
With this realization, we have developed a quantita-
tive framework for interpreting this type of experi-
mental measurement based on Kramers’ rate theory
of molecular dissociation [13]. This framework also
applies to various other molecular force measure-

ments, such as those with optical trapping [5,6],
reflection interference microscopy [14,15] flexible
glass fibers [7], and magnetic beads [8].

2. Theory

Measurements which probe molecular interactions
must exert external forces on the molecular complex.
The total force on the ligand is the sum of the probe
and intermolecular forces. The total potential energy
is:

E( X) = Uimermolecular( }C) + Uprobc( X) ( 1)

Classically, the ligand is thought to sit at an equilib-
rium position, measured with respect to the protein,
where the total force is zero. At this point the
intermolecular and probe forces are exactly balanced.
This constitutes an equilibrium measurement, in
which the force being exerted on the probe is
recorded. As we will show, if the probe is rigid
enough then the equilibrium position is unique and
controllable. However, if the stiffness of the probe
and the intermolecular potential are on the same
order of magnitude, then a wide range of interesting
dynamic phenomena occur. Our basic assumption is
that the probe (the AFM tip) introduces a harmonic
potential to the one-dimensional protein—ligand com-
plex. Thus, the total potential energy is

k )
E(x) = U(x) + 5 (x=d)’ (2)

where the protein is fixed on the substrate (x = 0),
the ligand is at a position x, and U(x) is the
intermolecular potential. The minimum force re-
quired to separate the ligand from the protein, or
disruptive force, is immediately derivable from two
parameters which are controlled by the experimenter:
d, the position of piezoelectric motor, and %, the
Hookean constant of the AFM cantilever. The total
force on the ligand at x is —dE(x)/dx.

In order to present our analysis quantitatively, we
assume that the intermolecular force can be ex-
pressed as a van der Waals’ potential

(-3 ®

U(x)= -V,
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where x is the intermolecular separation, x, is the
equilibrium separation, and V|, is the magnitude of
the energy well depth [16]. The true intermolecular
potential will be more complicated than this simple
van der Waals’ form, especially in the presence of
complicated protein conformations which include
multiple binding contacts [17]. Applying a similar
analysis to other intermolecular potentials is compu-
tationally straightforward. Since many potential func-
tions can be phenomenologically fit by Eq. (3), it is
reasonable to use the van der Waals’ model as a first
order approximation. Our fundamental result will be
developed from Kramers® theory of molecular disso-
ciation (see Eg. (9)), which depends only on the
curvatures of the reactant well and activation barrier.
As will be described below, the curvatures are fit
with a lowest order Taylor expansion about equilib-
rium as harmonic forces. While the results may
quantitatively differ with other force models, their
qualitative form should be unchanged.

At the equilibrium position of E(x) the force
exerted on the ligand by the protein is equal to the
force on the AFM tip, for any given value of d.
Therefore the intermolecular force as a function of
x, F=—03U/dx=k(x—d) can be obtained by
slowly changing d. For a certain range of values of
d there are two stable equilibriums, a molecular well
and a harmonic well (Fig. 2). Outside this range of
d-values, one of the wells will disappear.

Rupture may occur over a wide range of probe
forces (Fig. 2). We define the minimum rupture
force and the critical rupture force, respectively, as
the force which is exerted on the probe when E(x)
switches from one-well to two-well and from two-
well to one-well. Because of thermal fluctuation, a
single macromolecular complex may rupture any-
where between the minimum and critical rupture
forces. Hence there is no unique value which can be
determined experimentally corresponding to the
‘rupture force’. If one is willing to wait long enough,
a transition between the two wells will always occur.
As the cantilever is moved away from the sample,
the height of the potential barrier which must be
crossed lowers, and the rate of escape increases. As
one moves the cantilever faster, the mean measured
rupture force is closer to the critical rupture force
since there is less time for the thermal activated
transition to occur.

3 / /
Increasing
s ot Cantilever
2 Position
x
o]
>
o
2 1
w
o
€
2
€ o
-1

0 1 2 3 4 5 6
Intermolecular Separation x/xo

Fig. 2. Total potential energy for various positions of the con-
trolled piezoelectric motor. Left to right: = 2.0, 2.5, 3.0, 3.5 x,
and the spring constant is kxg / V, = 1. The bottom carve gives
the pure van der Waal's function.

When dissociation occurs, the ligand will fall to
the equilibrium position of the harmonic potential.
As seen from Fig. 2, the intermolecular spacing stays
nearly constant while the activation barrier dimin-
ishes with increasing d. Furthermore, the distance
between the two wells does not go to zero before the
molecular well disappears. Hence there is a region
for x where E(x) can never have a minimum for
any d. This is a blind region for the measurement
since the force in this region is not measurable. The
larger the harmonic force constant &, the smaller the
blind region. When the bending constant & is greater
then a critical value, i.e. the cantilever is sufficiently
stiff, the potential will always have a single well.
This is the traditional mode of measuring force and
the full range of the intermolecular interaction can be
determined.

2.1. The classical mechanics of protein—ligand sepa-
ration and critical rupture

We will demonstrate that dissociation of a molec-
ular complex by a Hookean spring has some interest-
ing and unexpected behavior. Even in classical me-
chanics, rupture is not an inherent property of the
molecular potential. At sufficiently slow speed, the
dissociation process constitutes a set of equilibrium
measurements, and the critical rupture force depends
on the stiffness of the spring, as well as the velocity
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Fig. 3. Total force at various cantilever positions d. Solid curves:

intermolecular force; dashed lines: cantilever force. x, is the
equilibrium protein—ligand separation.

of the probe. Furthermore, the total energy required
to rupture the bond is also a function of probe
stiffness, even for the equilibrium measurement (see
below). Hence it is not without error to estimate the
bond energy from the energy involved in rupturing
the bond.

There is an important conceptual difference be-
tween the bonding force measurement and bond
rupture force measurement using the AFM. As we
have stated, the equilibrium force measurement is
made when the probe is stiff enough so that the total
potential has a single equilibrium point at all time.
The phenomenon of bond rupture, on the other hand,
is inherently a feature of the double-well, one in
which the ligand is held just prior to the rupture, and
a second well in which the ligand is held just after
rupture. This intricate balance of forces between the
intermolecular bond and the AFM cantilever is illus-
trated in Fig. 3, where we plot the intermolecular and
probe forces instead of energies, as a function of
protein—ligand separation [18]. The set of parallel
lines represents the force exerted on the ligand by
the AFM tip for different cantilever positions 4.
Their slopes are the tip stiffness k. Increasing the
stiffness of the probe makes these lines steeper (not
shown). The ligand is in equilibrium when the total
force exerted on it is zero; this occurs at the intersec-
tions of the lines and the force curve. For a given

stiffness, withdrawal of the AFM probe corresponds
to displacements of the straight line to the right in
the figure. As the line is displaced from left to right,
it intersects the force curve first at one point, then at
three points, and then at a single point again. Hence
the system goes through three stages: a single-well
dominated by the intermolecular potential, a double
well, and then a single well dominated by the har-
monic potential (Fig. 2). Thus a rupture, an abrupt
jump from the bottom of one well to the bottom of
the next well, is defined only for an intermediate
range of cantilever positions. If the cantilever force
is either sufficiently small or sufficiently large, no
observable rupture takes place. When both wells are
present, stochastic bond separation becomes possi-
ble. As the probe continues to be withdrawn, the first
well disappears. The Hookean force exerted when
this occurs is what we have defined as the critical
rupture force. At the critical rupture force, the line
representing the Hookean spring is tangent to the
force curve. If the spring is sufficiently stiff, rupture
will never be observed, as there will never be more
than one intersection between the curve representing
the intermolecular force and the line representing the
cantilever force. For any given values of &k and d,
the critical rupture force is given by solution to
= —dF/dx, where

F(x) = 12(Vo/x)[(x0/x) = (xo/0)]  (8)

is the intermolecular force. Fig. 4 shows the critical
rupture force as function of k. The bond energy V,

F =260V, fxg
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Fig. 4. Critical rupture force as a function of cantilever stiffness,
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is equal to the work done in moving the ligand from
x, to infinity in a potential field described by Eq.
(3). Since the total work W done by the AFM tip in
rupturing the bond is equal to the area below the
force curve, the total energy required to rupture the
bond depends on the stiffness of the tip,

W=f:)F( x)dx

L (] o

where ¥(> x,) is the intermolecular separation at
the critical rupture force. Eq. (5) is interesting, since
it says that it is not necessary for the tip to supply
the entire bond energy V, = [ F(x)dx to separate
the complex. The remaining bond energy is stored in
the spring and is released in the rupturing process.
Even more surprising is that for a system in solution,
W can be made small by selecting a sufficiently soft
spring, i.e. one with k very small.

For physiological measurements, the protein—
ligand system is normally suspended in a viscous
solution (e.g. water). This adds an additional term to
the force (Eq. (4)),

Fviscous = nV (6)

where 717 is the friction coefficient and V the veloc-
ity. For a spherical particle of radius r, this is related
to the viscosity & (0.01 poise for water) as n = 67 ré
[19]. In the following calculations, the direct contri-
bution of deterministic frictional forces to Eq. (4) has
been neglected. However, viscosity does play a dom-
inant role in describing the stochastic kinetics, as we
shall see.

=V,—V

2.2. The rupture force measurements and their prob-
ability distribution

The microscopic motion of a macromolecule in a
viscous solution undergoes rapid fluctuations due to
its incessant collisions with the surrounding solvent
molecules. Since the force involved in such Brown-
ian motion is random, the dynamics of ligand disso-
ciation from the molecular complex are described in
terms of probabilities. When a bound ligand is sub-
jected to an external potential, the probability distri-
bution of the position x and the velocity V of the

ligand at time ¢, P(x,V,), can be obtained from a
Fokker-Planck equation [20]. Kramers’ rate theory
[13] is based on the stationary solution of this one-di-
mensional differential equation with E(x) exactly
like the curves illustrated in Fig. 2. Applying
Kramers’ theory to chemical dynamics requires
choosing an appropriate one-dimensional ‘reaction
coordinate’. Such a coordinate is provided naturaily
by the axis of the AFM probe, which makes our
problem intrinsically one-dimensional, thereby re-
moving one potential ambiguity from the analysis.
One salient feature of Kramers’ theory is the contin-
uous passage from a high activation barrier, where
Eyring’s transition-state theory applies, to the low
energy barrier where diffusion dominates. This is
particularly important to the current analysis in which
the energy barrier diminishes with increasing 4.

Kramers solution makes the following assump-
tions: (i) near the bottom of the molecular well the
complex is in equilibrium; (ii) at some point past the
top of the barrier, escape is certain; (iii) there is no
reverse reaction; and (iv) both the reactant well and
the barrier may be approximated by quadratics in
some small neighborhoods of the extrema. These
assumptions can all be made for the one-dimensional
AFM protein-ligand problem, which is then ex-
pressed as

«{d)

B— F (7)

where B represents the ‘bound’ state of the
protein—ligand pair and F represents the ‘free’. or
separated state. Since separated particles are col-
lected and removed, the rate constant for the reverse
reaction is zero (assumptions ii and iii). The proba-
bility distribution function, P(r), that the protein—
ligand complex is still bound at time ¢ is related to
the rate constant as

dP(r)
= k() P(1) (®)
t
Kramer’s solution for the rate constant is
k= Rt/ T 4 (n/2may) - (1/2mwg)
. y n/2mawy n/2may

(9)

where wy and wy are determined by the curvatures
of the reactant well and activation barrier, respec-
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tively. The effective spring constant is twice the
coefficient of the quadratic term in a Taylor’s series
expansion of the E(x); this is just the second deriva-
tive of the potential evaluated at the equilibrium.
Hence

w0g = E'(x)/m (10)
and
wR=V/E”(xR)/m (”}

The rate constant can then be computed from Eq.
(9) as described in the Section 3. Since the complex
is initially bound,

P(1) =exp{—f0r:<(d('r))dfr} (12)

The probability that the complex is separated by
time t is F(t)=1— P(1); the probability density
function f(¢) for protein—ligand separation is the
derivative of F(t),

dF d(1—=P(1))
—d—t_= dt

- c(@)erp|  ['k(o()ar) (1)

The mean and variance are w=<r) and o° =
{t*) — u* where the brackets ‘() denote average
under the probability density function f(r),

(t) = foxtx(d(t))exp{—fO’K(d(T))dT}dt (14)

f(1) =

(%) =]:zlx(d(z))exp{—fO’K(d(T))dT}d;
(15)

These expressions are valid regardless of the mo-
tion of the probe. If the probe is withdrawn at a
constant velocity, i.e. d =x, + V¢, then the probabil-
ity density for rupture as a function of probe position
dis

p(d) = <D exp{—fd K(p)dp} (16)

% W V

When V =0, Eq. (16) is undefined and the mean
and variance must be computed from Egs. (14) and
(15). In this limiting case, the rate constant « is, in
fact, a constant, and the probability density function

logp

Probability Density Function

1 2
Force, Units of Vo/xe

Fig. 5. Probability density function f(A) for protein-ligand sepa-
ration at different cantilever speeds, normalized to give a total
integral of [ (the probability of protein—ligand separation by the
time the AFM force is Fis f{f(A)dA. Left to right, V = 107> A/s
to 10" A/s in steps of 100 ;\/s. Inset: low velocity limit,
showing the approach to an exponential distribution, which would
be linear on the semi-logarithmic plot. Left to right, V = 3, 10, 30,
100, 300 A/}LS. Parameters used for simulation: x,=2 A,
viscosity = 0.01 poise (water); effective radius for friction = 5.3
A; mass = 142 Daltons (e.g. biotin); well depth = 8.3 kcal /mol
(e.g. for biotin—avidin); T == 278.52 K; & == 61 mN/m. The dashed
vertical lines are at F = 0.1319V, /x, (inset) and F =
2.69V, / xq.

K1

becomes an exponential, f(1)=«e ™' with u=¢
= 1/k. Since the velocity is a continuous variable
and the force is a continuous function of velocity and
position, we expect the probability distribution as a
function of force to approach an exponential distribu-
tion for very small withdrawal velocity (see Fig. 5
inset). The bond will eventually dissociate without
pulling the probe if one is willing to wait long
enough, and the time to dissociation is exponentially
distributed. This is characteristic of a completely
random (Poisson) process [21].

3. Method

The numerical implementation was as follows.
The integral in Eq. (16) is set initially to zero and the
cantilever is slowly withdrawn at a constant velocity
V starting at x, at r=0. At each position of the
cantilever, the reactant well location is determined
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using Newton’s method [22] for the roots of dE /d x
where E(x) is given by Eq. (2). The first guess
ignores the cantilever by setting & = 0 and the initial
intermolecular separation to x,. The position of the
barrier is determined using a bisection algorithm
because it is difficult to obtain a good first guess
which will guarantee convergence with Newton’s
method. If there is no barrier, the cantilever is too
close to the sample and the probability of escape is
zero. If there is a barrier, the barrier and well
frequencies can be obtained from Eqs. (10) and (11).
The rate constant is then determined from Kramers’
formula, Eq. (9), and the integral in Eq. (16) is
updated using Euler’s method [22] to give the proba-
bility density at d. The force applied by the tip of the
AFM is calculated as F = k(d — x) (see Fig. 1). The
algorithm is then repeated iteratively until the proba-
bility density function is determined for an interest-
ing range of d.

The entire procedure was then repeated for a wide
range of velocities giving an ensemble of probability
density functions, one function for each velocity.
The mean and variance of the distributions were
calculated and plotted as a function of velocity. All
calculations were done in FORTRAN.

4. Results

The probability density functions (pdfs) for the
force at which dissociation occurs are illustrated in
Fig. 5 for a range of cantilever velocities. The mean
and width of the distributions are shown in Fig. 6.
The following observations are made:

1. As velocity increases, the distribution moves to
the right. Since less time is spent in the low-force
regime, by the time the probability of rupture be-
comes appreciably non-zero, higher forces are being
applied to the protein—ligand system.

2. At lower velocities, the distribution widens
with increasing velocity. If the probe is held at a
fixed position, and the observer waits for a suffi-
ciently long period of time, all of the protein—ligand
pairs will eventually separate due to the stochastic
forces (a zero-velocity extrapolation). Hence all pairs
will separate (i.e. rupture) under the same applied
force without variance. Hence the width of the distri-
bution is zero. At slightly higher velocity, only a
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Fig. 6. Dependence of rupture force on cantilever velocity. w,
o = mean, standard deviation of force, in units V,, / x,, at pro-
tein~ligand separation.

finite amount of time is spent within any finite
(small) range of forces, and hence the probability
distribution will have a finite width.

3. The width of the distribution decreases at high
velocity. When the probe is withdrawn very quickly,
the potential function will very quickly pass through
all three regimes: one-well, then two-well, then one-
well again. The final transition from two-well to
one-well is one of well coalescence, dominated by
the critical rupture force. Well-coalescence is equiva-
lent to rupture with a probability of one. The faster
the probe, the sooner the third regime is reached, and
less time is spent in the two-well, the stochastic
regime. Hence the distribution width must decrease
at high velocity.

4. There is a peak width to the distribution at an
intermediate velocity; this follows immediately from
the previous two observations and continuity.

5. There is a minimum force value, below which
rupture is impossible and above which there is a
finite possibility of rupture. This force corresponds
to the minimum rupture force defined above at the
one energy-well to two energy-well transition.

6. At high velocity, the probability of rupture is
approximately Gaussian-shaped. At low velocity, the
probability approaches an exponential distribution
with a peak at the minimum rupture force. Rupture
in this case is approaching a Poisson process with
exponential distribution.
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Fig. 7. Dependence of rupture force on harmonic constant, for two
different velocities. Force is in units of V|, /x,. The two energy
wells merge when the force reaches =2.69V, /x, (horizontal
line in Fig. 4). The vertical asymptote in Fig. 4 (at k = 7.48V,, / x;,
or F =237 N/m) is off scale to the right.

As we have discussed, the force necessary to
separate the complex, which we have called the
rupture force, is also a function of the spring con-
stant of the cantilever. This is illustrated in Fig. 7.
The minimum rupture force is a linear function of
stiffness for the entire range of & for which both
potential wells in Fig. 2 exist. When the minimum
rupture force reaches the critical classical value
shown in Fig. 4, the two wells coalesce; for larger
k-values, the rupture does not exist. This would
correspond to the situation in Fig. 3 in which the line
is so steep that it is never possible to intersect the
force curve more than once regardless of the position
of the cantilever.

5. Discussion

Our goal was to extract the core physical chem-
istry from the process of protein—ligand separation
with the AFM; the resulting one-dimensional model
provides a theoretical framework for real laboratory
data analysis and produces quantitative results which
are consistent with experimental measurements. For
example, the avidin-biotin rupture force has been
estimated at 160 + 20 pN [9], from which we can
estimate the order of magnitude for bond length.

From Fig. 4, F <2.69V,/x, hence x, <21 A (at
V, = 18.3 kcal/mol and k=61 mN/m, assuming
the quoted value is the mean rupture force). The
actual bond length (in this approximation) is some-
what less than this value, depending on the location
of the knee in Fig. 4.

We have used Kramers’ theory to study the pro-
tein—ligand dissociation under an external force. Our
analysis assumes dissociation iS a quasi-stationary
process. Kramers’ theory is known [23] to break
down at either extremely high (> mey) or ex-
tremely low friction (n << mwy) due to the recom-
bination of the protein—-ligand pair. Both forms of
breakdown are avoided in AFM experiments because
the backward reaction does not occur.

Under normal experimental conditions multiple
complexes will bind when the probe is brought into
contact with the AFM substrate. The observed rup-
ture statistics will thus have multiple peaks, corre-
sponding to the number of bonds which are broken
in a single observation, each of which is described
by a probability density function (pdf) such as those
illustrated in Fig. 5. The total observed histogram is
then described by a weighted sum of the individual
pdfs, where the weights give the probability of each
number of complexes forming. The multiple-bond
breaking can be characterized using a Poisson distri-
bution (work in progress).

We have treated a single macromolecular com-
plex in the simplest possible terms. In this model, the
protein-ligand pair is represented as a compressible
barbell with a simple 6-12 potential representing
molecular interaction. One part of the complex is
held fixed, while the other is pulled out by an
external harmonic force (representing the AFM
probe). This one-dimensional model ignores the true
complexity of macromolecular interactions. In real-
ity, these forces are not limited to a single dimen-
sion; multiple residues of the protein will usually
bind to the ligand. Biotin, for example, interacts with
at least eleven hydrophilic and five hydrophobic
residues in avidin [24] and to at least seven residues
of strepavidin [25]. Our model only considers the
components of these bonds along the direction of the
AFM axis, and lumps them all together into a single
van der Waals® interaction, regardless of the geome-
try of the complex with respect to the apparatus.
Hence U(x) should be understood as a potential
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describing the mean force between the protein and
the ligand. In addition, while van der Waals’ forces
interacting with a particular site may dominate some
configurations, there are usually other forces in-
volved. To accurately describe single complex bind-
ing and rupture, one would expect that all of the
these interactions must be taken into account [26].
However, care must be taken in these extrapolations
to correctly interpret the results of a zero velocity
extrapolation. With zero pulling speed, protein—
ligand complex separation is essentially a Poisson
process. The bond will eventually rupture stochasti-
cally subject to thermal forces (see result 2 and the
discussion following Eq. (16) with the time to sepa-
ration described by an exponential probability distri-
bution [21].
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