2. Description of GTARG

2.1. The GTARG Control Loop

GTARG combines orbit prediction and targeting algorithms to design ground track maintenance maneuvers. The basic control loop is shown in figure 2.1. The initial state vector is input as a set of Keplerian mean elements. In runout mode the ground track is propagated for a desired period of time, incorporating the effect of a pre-specified maneuver on the initial orbit. The orbit propagation model, described in section 2.2, includes all effects which cause significant perturbations on the ground track. Maneuvers are modeled impulsively, as described in section 2.3. Optional error models include the effects of uncertainties due to Δv execution error, drag unpredictability, orbit determination accuracy, and unspecified along-track satellite fixed forces. The error models, as summarized in section 2.4, can be used to predict an envelope of uncertainty about the predicted ground track with a desired confidence level, typically 95%. The orbit propagation can be combined with a targeting strategy to determine the required maneuver $\Delta \mathrm{v}$ magnitude. GTARG provides two targeting strategies, as summarized in section 2.5. These are longitude targeting, which maximizes the time between maneuvers, and time targeting, in which maneuvers are targeted to occur at specific intervals. Output is provide in the form of an executive report summary and a plot file. The executive report summary includes tables of the mean elements and ground track as a function of time which may be imported into spread sheets. The plot file is in the form of a FORTRAN namelist file. Control of the contents of the output files is described in section 3.

Figure 2.1.
The GTARG control loop.

2.2. Orbit Propagation Model

The initial state is input as a set of mean Keplerian elements ($a, e, i, \Omega, \omega, M$). Mean elements are derived using the procedure described by Guinn. ${ }^{1}$ Internally, non-singular mean elements (near $e \approx 0$) are propagated with dynamic models that include a highorder Earth gravity field, atmospheric drag, and luni-solar gravity. The propagation algorithm includes all perturbations that cause significant variations in the satellite ground track. Recurrence formulae are used for the geopotential and luni-solar gravitational perturbation. Since the propagation step size is a integral multiple of the satellite's period, a polynomial fit ${ }^{2}$ to the mean orbital Jacchia-Roberts density ${ }^{3}$ at the TOPEX/POSEIDON altitude is used to predict drag. A constant density atmosphere is also available. User-defined density functions can be incorporated by re-linking the executable. (Instructions for this are given in section 6.) A variable mean area (VMA) model is used to account for drag area variation due to the nearly continuous yawsteering of the satellite. A constant area may also be utilized. The ground track is computed once per orbit, as the longitudinal difference at the ascending node between the actual and reference nodal longitude. The orbit is propagated either for a user specified time interval (runout mode) or until the ground track crosses a specified edge of the control band (targeting mode).

The recurrence formulae enable the use of zonal harmonics to any order. GTARG was implemented to include terms from J_{2} through J_{29}. Due to the form of the equations, computational speed is no longer dominated by lengthy field evaluations, and hence is relatively independent of field size. Merson's extension ${ }^{4}$ of Grove's geopotential ${ }^{5}$ provided the required recurrence relations for the Geopotential Perturbations in terms of internal non-singular forms of the mean elements. ${ }^{6}$ The secular effect of $J_{2}{ }^{2}$ uses the explicit expressions given by Merson. The method is based upon the theory of Kozai. ${ }^{7}$

Kaula's disturbing function ${ }^{8}$ was used to develop expressions for the change in orbital parameters due to luni-solar gravity. Escobal's analytic form for the planetary ephemeris in ecliptic mean elements is used to predict the positions of the sun and the moon. ${ }^{9}$

Along-track satellite-fixed forces (also called "Boost" forces) which are not modeled by any of the other models in GTARG are described by table look-up of the change of semimajor axis induced by the force. The table contains a list of daily or time-tagged values of $d a / d t$.

Relevant parameters are summarized in table 2.1.
${ }^{1}$ Guinn, 1991.
${ }^{2}$ Frauenholz \& Shapiro, 1991.
${ }^{3}$ Roberts, 1971.
${ }^{4}$ Merson, 1966.
${ }^{5}$ Groves, 1960.
${ }^{6}$ Cook, 1965.
7Kozai, 1959.
${ }^{8}$ Kaula, 1962.
${ }^{9}$ Escobal, 1983.

Table 2.1.
Orbit Propagation Parameters.

Parameter	
ATDEN	
ATDEN_ANN	Description Atmospheric density (for constant model). Coefficients of annual correction to density (for polynomial model).
ATDEN_POLY	Polynomial coefficients for atmospheric density. Coefficients of semiannual correction to density
ATDEN_SEMI	(for polynomial model).
ATMOS	Atmospheric model selected.
ATARGONLY	Stop targeting after first guess.
BREAKPTS	TOPEX VMA model breakpoints.
CAREAS	TOPEX VMA model constant areas
	corresponding to breakpoints.
CD	Drag coefficient.
DAYS	Length of propagation for runout.
DATE	Epoch of ORBIT.
DRAG	Select drag perturbation.
DRAGAREA	Drag area (for constant area model).
DRAGMODEL	Drag model selected.
DSMADT_DATA	Table of da/dt values for boost force.
DSMADT_DATES	Table of dates for DSMADT_DATA.
JEARTH	Earth zonal coefficients.
LSFLAG	Select luni-solar gravitational perturbation.
LTOP	Number of earth zonals to use.
M	Propagation step size in orbits.
MASS	Satellite mass.
NDSMADT_DATA	Number of data points in DSMADT_DATA.
ORBIT	Initial Keplerian state vector.
REV	Revolution number at DATE.
VMATAB	TOPEX VMA table.

2.3. Maneuver Modeling

GTARG predicts the ground track evolution following an impulsive maneuver, measured with respect to the reference track. The maneuver is defined in terms of magnitude (ΔV) and direction, represented by yaw and pitch angles. The yaw and pitch angles give the direction of the $\Delta \mathrm{V}$ vector. Relevant parameters are summarized in table 2..2.

Table 2.2. Maneuver Modeling Parameters.

Parameter	Description
DV	
Maneuver ΔV magnitude.	
PITCH	Maneuver ΔV quantization.
Satellite attitude pitch angle.	
YAW	Satellite attitude yaw angle.

2.4. Error Models

Eastern and western error envelopes on the ground track are calculated along with the unbiased ground track as illustrated in figure 2.2. The error envelope defines the most eastward and most westward ground tracks which can reasonably be expected with a specified degree of confidence.

Figure 2.2.
Ground track confidence envelope.

The longitudinal width of the envelope is derived from anticipated maneuver execution, orbit determination (OD), drag prediction, and unmodeled along-track force ("boost/decay") errors. The drag modeling error is dominated by uncertainties in solar activity prediction. Maneuver execution errors are categorized into fixed, proportional, and pointing errors. The orbit determination error is reflected primarily as an error in the semi-major axis. Anticipated error σ 's in the solar and geomagnetic indices $F_{10.7}$, $\overline{F_{10.7}}$, and K_{P} are used to generate high-density and low-density trajectories; the
resulting differences in the ground track with the error-free trajectory are used to calculate the drag error. The three types of errors are propagated, converted into ground track units, and then added in quadrature with weight factors to determine the total error envelope. ${ }^{1}$ Relevant parameters are summarized in table 2.3.

Table 2.3.

Error Model Parameters.

Parameter	Description
BOOST_ERROR_MODEL	Select optimistic or pessimistic "boost" error model.
DELTA_A_OD	Initial Δ a error due to orbit determination.
DRAG_ERROR_MODEL	Select optimistic, pessimistic, or table look-up error model for drag.
DSMADT_DATA_SIGMA	1σ error for "boost" model (constant).
DSMADT_DATES	Dates for data in DSMADT_SIGMAS (array of time-tagged values).
DSMADT_EPOCH	Epoch of first data point in DSMADT_SIGMAS (array of daily values).
DSMADT_SIGMAS	1σ error for "boost" model (array of daily or time-tagged values, corresponding to data points in DSMADT_DATA).
GTBIASFILE	Array of daily 1σ ground track errors for drag prediction (table look-up drag error model).
NDSMADT_DATA	Number of data points in DSMADT_SIGMAS and DSMADT_DATES.
SIGMA_DV_FIXED	1σ fixed ΔV execution error ($\mathrm{mm} / \mathrm{sec}$).
SIGMA_DV_PROP	1σ proportional $\Delta \mathrm{V}$ execution error (ratio).
SIGMA_SF_DRAG	Size of drag error envelope in standard deviations.
SIGMA_SF_B00ST	Size of "boost" error envelope in standard deviations.
SIGMA_SF_DVOD	Size of $\Delta \mathrm{V}$ and OD error envelope in standard deviations.

[^0]
2.5 Targeting

Two classes of targeting strategies are implemented in GTARG: longitude targeting and time targeting. These are illustrated in figure 2.3.

Longitude targeting utilizes the full control band to maximize the time between maneuvers. Applying a $\Delta \mathrm{V}$ at the eastern edge of the band, the semi-major axis is increased. The resulting higher nodal period causes the ground track to drift westward. Drag continuously reduces the nodal period until the ground track becomes just tangent to the western boundary; the ground track then reverses eastward as the period continues to decrease. Eventually the ground track returns to the eastern boundary after a time ($T L$ in figure 2.3).

Alternatively, in time targeting, the time between maneuvers is selected first. A smaller $\Delta \mathrm{V}$, which will allow the ground track to return to the eastern boundary sooner than $T L$ (T in fig. 2), is utilized for time targeting to the eastern boundary. Similarly, in time targeting to the western boundary, a larger $\Delta \mathrm{V}$ is used, causing the ground track to cross the western boundary some time t prior to the longitude targeting turn-around time TTURN. GTARG implements these three targeting schemes along with a simple runout mode in which the ground track profile is predicted but no maneuver targeting is performed.

Figure 2.3.
Longitude and time targeting strategies. The control band is shaded.

Targeting involves determination of the correct $\Delta \mathrm{V}$ magnitude for the selected targeting mode. GTARG makes as its first guess a constant-drag approximation, ignoring the earth oblateness and lunar and solar gravity perturbations. The trajectory is then successively propagated and the $\Delta \mathrm{V}$ is modified, until a satisfactory value of $\Delta \mathrm{V}$, which produces the desired ground track evolution, is found. For longitude targeting, successful targeting means that the westernmost ground track of the western confidence envelope just reaches (within a user-supplied tolerance) but does not cross the western edge of the control band. For time targeting, the desired confidence envelope will reach the desired edge of the control within a user-specified tolerance of the targeted time. The second iteration will either increase or decrease $\Delta \mathrm{V}$, depending upon whether the targeted ground track is overshot or undershot. Subsequent iterations for $\Delta \mathrm{V}$ are found by linear interpolation on the maximum westward ground track (for longitude targeting) or time of leaving the control band (for time targeting). The algorithm may terminate earlier if successive $\Delta \mathrm{V}$ guesses are smaller than the allowed command quantization level.

Relevant parameters are summarized in table 2.4.
Table 2.4.
Maneuver Targeting Input Parameters.

Parameter		Description
BNDFUZ	Allowed targeting error for longitude targeting.	
BOUNDS	Size of control band.	
DV	First guess $\Delta \mathrm{V}$ magnitude.	
DVBRACKET	Post-targeting runouts selected.	
DVQUANTA	$\Delta \mathrm{V}$ quantization.	
STRAT	Targeting strategy selected: runout, time targeting to the	
east or west, longitude targeting.		
TARGET_STRAT	Ground track to target on: eastern error envelope, western error envelope, unbiased ground track.	
TIMFUZ	Allowed targeting error for time targeting.	
TIMTGT	Target time for time targeting.	
WATCHINT	Saves result of intermediate iterations.	

2.6. Reference Grid

Ground track offsets are measured at the ascending nodes, as longitudinal distances along the equator from the nearest reference node. Input parameters are summarized in table 2.5.

Table 2.5.

Reference Nodes.

Parameter	Description
ORBITS XINGS Number of reference nodes. Node crossing longitudes of reference nodes..	

Since GTARG uses the mean elements and a zonal earth oblateness perturbation, mean reference nodes, rather than osculating reference nodes, must be specified in XINGS. The mean reference nodes are equally spaced about the equator and are assumed to be ordered chronologically in the input array.

2.7. Satellite Environment and Physical Parameters

Various environmental parameters may be controlled by user input. These are summarized in table 2.6.

Table 2.6. Satellite Environmental and Physical Parameters.

Parameter	Description
ATDEN	Atmospheric density (constant model).
ATDEN_ANN	Coefficients of annual correction to density (for polynomial model).
ATDEN_POLY	Polynomial coefficients for atmospheric density.
ATDEN_SEMI	Coefficients of semiannual correction to density (for polynomial model).
CD	Satellite drag coefficient.
EARTH_RAD	Earth equatorial radius.
FBAR_BIAS	Bias of data in FLXBAR.
FBAR_SLOPE	Slope of data in FLXBAR.
FLAT	Earth flattening f.
FLUX_BIAS	Bias of data in FLX.
FLUX_SLOPE	Slope of data in FLX.
FLX	$F_{10.7}$ solar Flux.
FLXBAR	81-day average of $F_{10.7}$ Solar Flux.
JEARTH	Earth zonal coefficients.
KP	Geomagnetic indices.
MASS	Satellite mass.
MU_EARTH	Earth GM.
MU_MOON	Lunar GM.
MU_SUN	Solar GM.
SID_DAY	Length of sidereal day.

2.8. Site Over Flights

Although the information is not directly used in the targeting process, GTARG has the capability of predicting the longitudinal overflight distances at a set of verification sites. ${ }^{1}$ A table of offsets will be printed and, if requested, the offsets will be written to the EZPLOT output file. Key parameters are summarized in Table 2.7.

Table 2.7.
Verification Site Input Parameters.

Parameter		Description
NSITES		Number of sites.
PLOTSITE		Selects Plotting of site offsets.
SITE_LOC	Latitude and calibrated longitudes of sites.	
SITE_LOC_TYPE	Indicates whether geodetic or geocentric data are input.	
SITE_NAME	Names of the sites.	
SITE_NODE	Number of reference node corresponding to the orbit on which the overflight occurs.	
SITE_STRAT	Selects calculation method - Keplerian approximation or propagated solution.	
SITE_SYM	Plot symbol for EZPLOT output.	
SITES	Enable calculation of site offsets.	

[^1]
2.9. Calibration of Input Parameters

GTARG propagates mean elements using only zonal terms for the earth oblateness perturbation. To account for modeling biases, the mean elements and reference nodes, must be properly calibrated with respect to the true mean elements and reference site locations. The calibration procedure is outlined in this section.

Once the osculating reference nodes are defined, the mean reference nodes are determined by selecting one of the osculating nodes and defining the remaining ones to be equally spaced around the equator. These reference nodes are all shifted by a fixed constant to null the mean offset at the overflight sights, if any. This introduces a bias in the nodes at the equator which is later corrected by shifting the right ascension of the ascending nodes of the mean elements.

The mean element calibration procedure ${ }^{1}$ is as follows. A reference orbit is defined by turning off all perturbations except for Earth gravity and tweaking the elements until the ground track repeats after 127 revolutions. ${ }^{2}$ This procedure is performed with both a precision numerical integrator, such as DPTRAJ ${ }^{3,4}$ or GTDS, ${ }^{5,6}$ and GTARG. Let $\hat{M}_{i}^{\text {INTEG }}$ be the reference mean elements derived from the integrator, and $\hat{M}_{i}^{\text {GTARG }}$ be a similar set of reference elements derived with GTARG. In general, $\hat{M}_{i}^{G T A R G} \neq \hat{M}_{i}^{\text {INTEG }}$ because of propagation and other modeling differences. The mean elements $M_{i}^{G T A R G}$ used for propagation by GTARG are then

$$
M_{i}^{G T A R G}=M_{i}^{\text {INTEG }}+\hat{M}_{i}^{\text {GTARG }}-\hat{M}_{i}^{\text {INTEG }}
$$

In particular, GTARG does not model tesseral field harmonics, time transformations (e.g., UT1-UTC), solid earth tides, precession, nutation and polar motion. This calibration procedure must be repeated whenever new data (e.g. timing or polar motion parameters) is added to the precision system. Adjustments will be required in the semi-major axis a, the right ascension of ascending nodes Ω, and the inclination i. First, Ω is adjusted to null the initial ground track offset introduced by the earlier shifting of the reference nodes and an additional minute change to account for variations in timing and polar motion. Next, a is adjusted so that the ground track does not precisely repeats without drift over a full cycle. Finally, the inclination is adjusted to minimize the offsets at the sites. Some iteration in the values of a and i will be required until the correct point is found. It may become desirable to slightly modify the reference grid and then repeat the entire process, until satisfactory convergence is obtained.

1Shapiro \& Bhat, 1993.
${ }^{2}$ The actual number of revolutions is a function of the characteristics of the particular exact repeat orbit. For the TOPEX/POSEIDON mission, this number is 127 .
${ }^{3}$ Spier, 1971.
4Ekelund, Sunseri, \& Collier, 1991.
${ }^{5}$ Long, Cappellari, Velez, \& Fuchs, 1989.
${ }^{6}$ Squier \& Byers, 1987.

3. Program Execution

3.1. Sample Run Stream

GTARG is executed via the command file GTARG. COM. The command format is
@GTARG input-file flux-file
where

> input-file - contains the input namelist parameters in namelist $\$$ INPUT.
flux-file - optional flux data file contains the input namelist parameters in namelist \$FLXKP. This file is only required if parameter DRAG $=$.TRUE. and ATMOS = 'TOPEXJR' in namelist \$INPUT.

The minimum contents of the run stream GTARG. COM are shown in figure 3.1.
Figure 3.1.
Sample run stream.

\$DEFINE/USER_MODE \$DEFINE/USER_MODE \$RUN GTARG.EXE	"IN_GTARG"	'PL'

3.2. Controlling Program Output

GTARG will always produce an output summary file (parameter OFILE). Other optional output files are summarized in table 3.1. Output file content control and selection parameters are summarized in table 3.2.

GTARG also produces plots which are formatted as EZPLOT input namelists. These plots contain the ground track as a function of time and the components of the error envelope due to the various error models selected. The content of the EZPLOT file may be controlled by the parameters of table 3.3. EZPLOT is a PGPLOT ${ }^{1}$ compatible utility. EZPLOT input parameters are summarized in the Appendix A.

[^2]Table 3.1. Output Files.

Parameter Giving File Name	Parameter Enabling File Creation		
BFILE	BOOT		Description
NEWBIASFILE		MAKE_BIAS_FILE	
OFILE		New ground track biases. ZFILE	PLOT

Table 3.2.
Output Control Parameters

Parameter		Description
ECHO_BIAS		Print contents of ground track bias file. ECHO_BOOST
Print formatted listing of "boost" model data.		
ECHO_FLUX	Print formatted listing of solar and geomagnetic data parameters.	
ECHO_GRAV	Print formatted listing of physical constants.	
ECHO_INPT	Dump contents of namelist \$INPUT as is.	
ECHO_VMATAB	Print formatted listing of TOPEX VMA table.	
ECHO_XING	Print formatted listing of reference grid.	
TERMINAL	Video terminal used.	
WATCH	Watch calculations interactively.	
WATCHINT	Save results of intermediate targeting iterations.	

Table 3.3.
EZPLOT Parameters Which May be Controlled via GTARG Input

Parameter		Description
EZHEAD		Print namelist \$ZFRAME to plot file.
ODAYS	Duration of time scale on plot.	
ODEVICE	PGPLOT output device.	
PLOTBOOST	Plot the "boost" force as well as ground track.	
PLOTCYCLE	Display and annotate the cycle boundaries.	
PLOTDATE	Origin of time scale.	
PLOTSITE	Display the ground track at the sites.	
PLOTTITLE	Title of plot.	

4. GTARG Input

All input parameters are in namelist $\$$ INPUT in the input control file unless otherwise specified.

ATARGONLY

ATDEN
Dimensions: 1

Type:	Logical
Units:	n/a
Default:	.FALSE.

If ATARGONLY $=$.TRUE . only the first guess $\Delta \mathrm{V}$ is calculated, and no further targeting is performed.

Dimensions: 1

Type:	DP
Units:	$\mathrm{kg} / \mathrm{km}^{3}$

Default: $\quad 10^{-6}$
The constant atmospheric density. Used only when DRAG = .TRUE. and ATMOS = 'CONST'.

ATDEN_ANN

Dimensions:	2
Type:	DP
Units:	$\mathrm{kg} / \mathrm{km}^{3}$, radians
Default:	$0.0454889572120465 \mathrm{~d}+00$,
	$6.1054952840340235 \mathrm{~d}+00$

Parameters of the annual correction term to the log of the density (see description under ATDEN). The form of the correction is

$$
\begin{aligned}
(\Delta \log \rho)_{\text {Annual }}= & \text { ATDEN_ANN(1) } \\
& \times \cos \left[2 \pi t+A T D E N_{-} A N N(2)\right]
\end{aligned}
$$

where t is the time in years into the current year, i.e., Jan. 1 at 00:00 GMT is $t=0$ and Dec. 31 at 24:00 GMT is $t=1.0$. Used only when DRAG = .TRUE . and ATMOS = 'POLYNOMIAL.

ATDEN_POLY

ATDEN_SEMI

Dimensions:	6
Type:	DP
Units:	$\log _{10}\left({ }^{\circ} \mathrm{K}\right), \log _{10}\left(\mathrm{~kg} / \mathrm{km}^{3}\right)$
Default:	$0.102444406127929688 \mathrm{D}+04$
	$0.414349639892578125 \mathrm{D}+03$
	$-.581061572488852007 \mathrm{D}+01$
	$0.720650161644122988 \mathrm{D}+00$
	$0.842769258090778408 \mathrm{D}-04$

The Chebyshev polynomial coefficients to the \log of the density. The form of the polynomial is

$$
\begin{aligned}
u= & \frac{T_{\infty}-A T D E N_{-} P O L Y(1)}{A T D E N_{-} P O L Y(2)} \\
z_{N}= & A T D E N_{-} P O L Y(N+3) \quad \text { for } \quad N=2 \\
z_{N-1}= & 2 u z_{N}+A T D E N_{-} P O L Y(N+2) \\
z_{i}= & 2 u z_{i+1}-z_{i+2}+A T D E N_{-} P O L Y(i+3) \\
& \quad \text { for } \quad i=N-2, \ldots, 1 \\
P\left(T_{\infty}\right)= & u z_{1}-z_{2}+A T D E N_{-} P O L Y(3)
\end{aligned}
$$

where $\mathrm{N}=2$ is the order of the Chebyshev basis (see above under ATMOS). Used only when DRAG = .TRUE . and ATMOS = 'POLYNOMIAL.

Dimensions: 2
Type: DP
Units: $\quad \mathrm{kg} / \mathrm{km}^{3}$, radians
Default: $\quad-0.0791350355550989 \mathrm{~d}+00$
$5.4144904588160714 \mathrm{~d}+00$
Parameters of the semiannual correction term to the log of the density (see description under ATDEN). The form of the semiannual correction is

$$
\begin{aligned}
(\Delta \log \rho)_{\text {Semiannual }}= & A T D E N_{-} \operatorname{SEMI}(1) \\
& \times \cos \left[4 \pi t+A T D E N_{-} \operatorname{SEMI}(2)\right]
\end{aligned}
$$

where t is the time in years into the current year, i.e., Jan. 1 at 00:00 GMT is $t=0$ and Dec. 31 at 24:00 GMT is $t=1.0$. Used only when DRAG = . TRUE . and ATMOS = 'POLYNOMIAL.

Dimensions: 1
Type: \quad C*10
Units: n/a
Default: 'TOPEXJR'
Selects the atmospheric model. Not applicable unless DRAG = .TRUE.

ATMOS = 'CONST' means use a constant, fixed atmospheric density. The density is given by ATDEN ATMOS = 'TOPEXJR' means use the TOPEX/POSEIDON mean orbital Jacchia-Roberts density calculated by JRSMPL2.
ATMOS = 'POLYNOMIAL' is the same model as TOPEXJR but uses the coefficients in ATDEN_POLY, ATDEN_ANN, and ATDEN_SEMI. The atmospheric density in $\mathrm{kg} / \mathrm{km}^{3}$ is modeled using the function

$$
\log _{10} \rho=P\left(T_{\infty}\right)+(\Delta \log \rho)_{\text {Semiannual }}+(\Delta \log \rho)_{\text {Annual }}
$$

where the exospheric temperature is calculated as

$$
\begin{aligned}
T_{\infty}= & 379^{\circ}+3.24^{\circ} \overline{F_{10.7}}+1.3^{\circ}\left[F_{10.7}-\overline{F_{10.7}}\right] \\
& +28^{\circ} \mathrm{Kp}+0.03^{\circ} e^{K p}
\end{aligned}
$$

The polynomial coefficients in P are given by ATDEN_POLY; the parameters of the Semiannual correction are given by ATDEN_SEMI; and the parameters of the annual correction are given by ATDEN_ANN. The solar and geomagnetic parameters are read from arrays FLX, FLXBAR, and KP.

ATMOS = 'USER' means use a user-supplied density function calculated by USER_DENSITY. To create a user-supplied density function, the template in USER_DENSITY.FOR must be completed with appropriate code to calculate the density with the user supplied model, compiled, and the executable relinked with the new density function, prior to execution. See the section of this document on Compiling and Linking for more information.

BFILE

BNDFUZ

Dimensions: 1
Type: \quad C*80
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: 'GTARG.B00T'
The name of the boot file. The boot file contains the namelist elements ORBIT and DATE at each propagation step, so that subsequent GTARG runs can be started ("booted") at any point. The boot file will not be created unless BOOT = .TRUE.

Dimensions: 1
Type: DP
Units: kilometers
Default: 0.01
Defines the convergence criterion for longitude targeting iteration (figure 4.1). The targeting iteration will continue until either (a) BOUNDS(1) < maximum westward ground track $<$ BOUNDS (1) - BNDFUZ, or (b) the difference between successive iterations on DV is < DVQUANTA.

Figure 4.1.
Definition of BOUNDS and BNDFUZ, showing the targeting success criterion. The control band is shaded.

BOOST_ERROR_MODEL

Dimensions: 1
Type: $\quad C^{*} 12$
Units: none
Default: 'OPTIMISTIC'
Selects the model used to determine the contribution to the error envelope due to boost modeling errors. ${ }^{1}$

BOOST_ERROR_MODEL = 'OPTIMISTIC' will assume that the errors for each propagation step are completely independent random variables. The total accrued error will be determined by adding the boost errors in quadrature.

BOOST_ERROR_MODEL = 'PESSIMISTIC' will assume that the errors for each propagation step are completely dependent random variables. The total accrued error will be determined by adding the boost errors linearly.

The boost errors will be determined from DSMADT_DATA_SIGMA (a constant error, the same each propagation step) or DSMADT_SIGMAS (a time-tagged array of errors).

BOOT	Dimensions:	1
	Type:	Logical
	Units:	n/a
	Default:	.FALSE.

If BOOT = .TRUE ., a boot file will be generated. See BFILE.

BOUNDS

Dimensions: 2
Type: DP
Units: kilometers
Default: -1.0, 1.0
The bounds of the control band in kilometers (see figure 4.1). Used for targeting and for labeling the EZPLOT output file.

BOUNDS (1) is the western boundary of the control band.
BOUNDS(2) is the eastern boundary of the control band.
BREAKPTS
Dimensions: 2
Type: DP

[^3]$\begin{array}{ll}\text { Units: } & \text { deg. } \\ \text { Default: } & 15^{\circ}, 75^{\circ}\end{array}$
Breakpoints for yaw steering logic. Used only when DRAGMODEL = 'VMA'.

CAREAS

CD

DATE

DAYONE

DAYS

Dimensions: 2
Type: DP
Units: $\quad \mathrm{m}^{3}$
Default: 0.0
Constant drag areas for VMA model. Used only when DRAG = .TRUE. and DRAGMODEL = 'VMA'.

CAREAS(1) is the area at $\beta^{\prime}=0^{\circ}$.
CAREAS (2) is the area at $\beta^{\prime}=90^{\circ}$.
Dimensions: 1
Type: DP
Units: none
Default: 0.0
Drag coefficient C_{D}. Used only when DRAG $=$. TRUE .
Dimensions: 1
Type: \quad C*25
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: ' '

Epoch of the initial state vector in ORBIT. The format of DATE is as in '23-MAR-1992 17:27:54.0000'

Dimensions: none
Type: \quad C*25
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: ' '
Namelist: \$FLXKP
Data epoch of first point in solar and geomagnetic data arrays FLX, FLXBAR, KP, DFLX, DFLXBAR, DKP. The remaining data in the arrays is assumed to be spaced at 1 day intervals up to NUMDAY. Used only when DRAG = .TRUE .

Dimensions: 1
Type: Integer
Units: Days
Default: 0

If STRAT $=$ 'RUNOUT', DAYS gives the duration of the propagation, starting from DATE, in days.

If ODAYS is not specified, DAYS also gives the length of the y-axis for the EZPLOT output file, for any value of STRAT.

Dimensions: 1
Type: DP
Units: meters
Default: 0.0
The 1σ uncertainty in the semi-major axis of the initial elements, due to orbit determination errors alone.

Dimensions: 1:1000, selected by NUMDAY.
Type: DP
Units: Solar Flux ($\mathrm{F}_{10.7}$) Units
Default: 0.0
Namelist: \$FLXKP
The 1σ uncertainty in the values of $\mathrm{F}_{10.7}$ given in array
FLX. DFLX(I) is the 1σ uncertainty in the value of FLX(I). The data in this array will be ignored unless DRAG = .TRUE. and DRAGBIASMODE = 'FLUX'.
Namelist: \$FLXKP
Dimensions: 1:1000, given by NUMDAY.
Type: DP
Units: Solar Flux ($\mathrm{F}_{10.7}$) Units
Default: all 0.0
Namelist: \$FLXKP
The 1σ uncertainty in the values of the 81-day centered means of $\mathrm{F}_{10.7}$ given in FLXBAR. DFLXBAR(I) is the 1σ uncertainty in the value of FLXBAR(I). The data in this array will be ignored unless DRAG $=$.TRUE . and DRAGBIASMODE = 'FLUX'.
DKPDRAGDRAGAREADimensions: 1:1000, given by NUMDAY.
Type: DPUnits: Geomagnetic index (Kp) units.
Default: all 0.0.
Namelist: \$FLXKP
The 1σ uncertainty in the values of the geomagnetic index given in array KP. DKP(I) is the 1σ uncertainty in the value of $K P(I)$. The data in this array will be ignored unless DRAG = .TRUE. and DRAGBIASMODE = 'FLUX'.
Dimensions: 1
Type: Logical
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: .TRUE.
The perturbation due to atmospheric drag is calculated when DRAG = .TRUE . The drag model used is selected by DRAGMODEL. Other related parameters are ATMOS, ATDEN, CD, DRAGAREA, and VMATAB.
DRAGAREA
Dimensions: 1
Type: DP
Units: $\quad \mathrm{m}^{2}$
Default: 0.0
The satellite drag area. Used only when DRAGMODEL = 'CONSTANT' and DRAG = .TRUE.
DRAG_ERROR_MODEL
Dimensions: 1
Type: $\quad C^{*} 12$
Units: none
Default: 'PESSIMISTIC'
Selects the model used to calculate the contribution to the error envelope due to drag. ${ }^{1}$
DRAG_ERROR_MODEL = 'OPTIMISTIC' - use the 1σ values of $\mathrm{Kp}, \mathrm{F}_{10.7}$, and Fbar in arrays DFLX, DFLXBAR, and DKP. To calculate the error envelope, a high-drag and low-drag trajectory will be propagated along with the nominal-drag trajectory. The contribution to the envelope will be determined from the differences between the ground track of the nominal trajectory and the ground track of the off-nominal trajectory. The

[^4]daily errors are assumed to be completely independent random variables at each propagation step and the ground track error due to drag is accrued in quadrature at each propagation step. Since three trajectories are being propagated, this mode consumes approximately three times as much CPU time as DRAG_ERROR_MODEL = 'FILE'.

DRAG_ERROR_MODEL = 'PESSIMISTIC' - use the 1σ values of $\mathrm{Kp}, \mathrm{F}_{10.7}$, and Fbar in arrays DFLX, DFLXBAR, and DKP. To calculate the error envelope, a high-drag and low-drag trajectory will be propagated along with the nominal-drag trajectory. The contribution to the envelope will be determined from the differences between the ground track of the nominal trajectory and the ground track of the off-nominal trajectory. The daily errors are assumed to be dependent random variables at each propagation step and the ground track error due to drag is accrued linearly with time. Since three trajectories are being propagated, this mode consumes approximately three times as much CPU time as DRAG_ERROR_MODEL = 'FILE'.

DRAG_ERROR_MODEL = 'FILE' The contributions to the error envelope are input as an array of ground track errors, one point per day, in file GTBIASFILE, array GTBIAS_DRAG. The information in arrays DFLX, DFLXBAR, and DKP is ignored. Using DRAG_ERROR_MODEL = 'FILE' is approximately three times faster than using DRAGBIASMODE = 'OPTIMISTIC' or 'PESSIMISTIC'.

Hint to speed execution: if the error envelope information due to drag is not required, use DRAG_ERROR_MODEL = 'FILE', and set SIGMA_SF_DRAG= 0 to null the envelope calculation for drag. This will triple the execution speed. If the error information is needed, and multiple runs are to be performed, set DRAG_ERROR_MODEL =
'OPTIMISTIC' or 'PESSIMISTIC' MAKE_BIAS_FILE $=$.TRUE . on the first run. An array GTBIAS_DRAG will be created with the ground track biases in this first run. This array can be used as input on subsequent runs with DRAG_ERROR_MODEL = 'FILE' While this is not as accurate, the improved throughput may outweigh the benefit gained by higher accuracy.

DRAGMODEL

Dimensions: 1
Type: $\quad C^{*} 10$
Units: $\quad \mathrm{n} / \mathrm{a}$

Default: 'VMA'

Chooses the model used to compute drag. Only used when DRAG = .TRUE. The atmospheric density model must be selected via input parameter ATMOS.

DRAGMODEL = 'VMA' means use the TOPEX VMA model for area as specified in parameters VMATAB, BREAKPTS, and CAREAS.

DRAGMODEL = 'CONSTANT' means use the constant satellite area as specified in parameter DRAGAREA.

DSMADT_DATA
Dimensions: 1:1000, selected by NDSMADT_DATA
Type: DP
Units: meters / day
Default: all 0.0
DSMADT_DATA is used to describe additional forces which are not modeled by any of the physical models in GTARG. It contains a table of daily da / dt values to describe the additional "boost" force.

If DSMADT_EPOCH = ' ',then DSMADT_DATA(I) gives da / dt for the date in DSMADT_DATES(I). GTARG will interpolate between the values.

If DSMADT_EPOCH contains a date in standard format (DD-MMM-YYYY hh:mm:ss.ffff) then DSMADT_DATA contains an array of daily points. DSMADT_DATA(I) gives da/dt I-1 days after DSMADT_EPOCH. The values are applied in a step function.

The 1- σ error for DSMADT_DATA(I) is DSMADT_DATA_SIGMA or DSMADT_SIGMAS(I).

DSMADT_DATA will only be printed if ECHO_BOOST = .TRUE.

$\begin{array}{ll}\text { Units: } & \mathrm{mm} / \mathrm{sec} . \\ \text { Default: } & 0.0\end{array}$
If STRAT $=$ 'RUNOUT', DV gives the magnitude of maneuver to be implemented prior to propagating the ground track.

IF STRAT = 'LONG', 'EAST', or 'WEST', DV gives the first guess for targeting. If $\mathrm{DV}=0.0$, the first guess will be calculated automatically by GTARG.

DVBRACKET
Dimensions: 3
Type: I
Units: none
Default: $0,0,1$
Only used when DVQUANTA > 0 .
Following a targeting run, a number of different maneuver magnitudes will be run out in the following do loop

DO $\mathrm{I}=\mathrm{N}-\operatorname{DVQUANT(1),~} \mathrm{N}+\operatorname{DVQUANTA(2),~DVQUANTA(3)~}$
where N is the number of DVQUANTA corresponding to the targeted $\Delta \mathrm{V}$.

DVQUANTA

EARTH_RAD
Dimensions: 1
Type: DP
Units: $\quad \mathrm{mm} / \mathrm{sec}$
Default: 0.0
Maneuver quantization level in millimeters / second. The maneuvers will be truncated to an integer number of DVQUANTA.

DVQUANTA $=0$ indicates that the maneuvers are not quantized.

Dimensions: 1
Type: DP
Units: km
Default: $\quad 6378.140 \mathrm{~km}$
The radius of the earth in kilometers.
ECHO_BIAS
Dimensions: 1
Type: Logical
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: .TRUE.

When ECHO_BIAS = .TRUE . and
DRAG_ERROR_MODEL = 'FILE' the array of daily biases used will be written to the standard output file.

ECHO_BOOST

ECHO_FLUX

ECHO_INPT

ECHO_GRAV

Dimensions: 1
Type: Logical
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: .TRUE.
When ECHO_BOOST = .TRUE . the data in DSMADT_DATA, DSMADT_DATA_SIGMA or DSMADT_SIGMAS, and DSMADT_EPOCH or DSMADT_DATES, will be written to the standard output file.

Dimensions: 1
Type: Logical
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: .TRUE.
When ECHO_FLUX = .TRUE . the data in FLX, KP, FLXBAR, DFLX, DKP and DFLX will be written to the standard output file.

Dimensions: 1
Type: Logical
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: .FALSE.
When .TRUE., namelist \$INPUT will be written as is to the standard output file.

Dimensions: 1
Type: Logical
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: .TRUE.
When .TRUE., the geopotential and other physical constants will be printed to the standard output file.

Dimensions:	1
Type:	Logical
Units:	n/a
Default:	.TRUE.

When .TRUE . , the reference equator crossing grid will be written to the standard output file.

Dimensions: 1
Type: Logical
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: .TRUE.
When.TRUE., if DRAGMODEL = 'TOPEXVMA' then the VMA table will written to the standard output file.

Dimensions: 1
Type: Logical
Units: n/a
Default: .TRUE.
When .TRUE., the \$ZFRAME namelist will be written to the EZPLOT output file ZFILE. This parameter is only applicable when PLOT $=$.TRUE.

Dimensions: 6
Type: DP
Units: SFU, SFU / day, ..., SFU / day**5
Default: all 0.0
FBAR_BIAS and FBAR_SLOPE allow two polynomials to be added to the mean solar flux in FLXBAR,

$$
\overline{F_{10.7}(t)}={\overline{F_{10.7}(t)}}_{\text {inputin } F L X B A R}+{\overline{F_{10.7}(t)}}_{\text {bias }}+{\overline{F_{10.7}(t)}}_{\text {slope }}
$$

where t is measured in days from DAYONE and
${\overline{F_{10.7}(t)}}_{\text {bias }}=\sum_{k=1}^{6} F B A R_{-} \operatorname{BIAS}(I) t^{k-1}$
FBAR_SLOPE
Dimensions: 6
Type: DP
Units: SFU, SFU / day, ..., SFU / day**5
Default: all 0.0
FBAR_BIAS and FBAR_SLOPE allow two polynomials to be added to the mean solar flux in FLXBAR,
where t is measured in days from DAYONE and

$$
{\overline{F_{10.7}(t)}}_{\text {slope }}=\sum_{k=1}^{6} F B A R_{-} \operatorname{SLOPE}(I) t^{k-1}
$$

FLAT
Dimensions: 1
Type: DP
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: $\quad 1 / 298.25$
Gives the Earth flattening.
Dimensions: 6
Type: DP
Units: \quad SFU, SFU / day, ..., SFU / day**5
Default: all 0.0
FLUX_BIAS and FLUX_SLOPE allow two polynomials to be added to the mean solar flux in FLX,

$$
F_{10.7}(t)=F_{10.7}(t)_{\text {inputin } F L X}+F_{10.7}(t)_{\text {bias }}+F_{10.7}(t)_{\text {slope }}
$$

where t is measured in days from DAYONE and

$$
F_{10.7}(t)_{b i a s}=\sum_{k=1}^{6} F L U X_{-} B I A S(I) t^{k-1}
$$

Dimensions: 6
Type: DP
Units: SFU, SFU / day, ..., SFU / day**5
Default: all 0.0
FLUX_BIAS and FLUX_SLOPE allow two polynomials to be added to the mean solar flux in FLX,

$$
F_{10.7}(t)=F_{10.7}(t)_{\text {inputin } F L X}+F_{10.7}(t)_{\text {bias }}+F_{10.7}(t)_{\text {slope }}
$$

where t is measured in days from DAYONE and

$$
F_{10.7}(t)_{\text {slope }}=\sum_{k=1}^{6} F L U X_{-} \operatorname{SLOPE}(I) t^{k-1}
$$

KP Dimensions: 1:1000, given by NUMDAY.
Type: DP
Units: Geomagnetic Index (Kp) Units
Default: 0.0
Namelist: \$FLXKP
Geomagnetic index $K_{p} K P(1)$ is K_{p} on DAYONE and $\mathrm{KP}(\mathrm{I})$ is $K_{\mathrm{p}} \mathrm{I}-1$ days later.

LSFLAG

LTOP

M

MAKE_BIAS_FILE
Dimensions: 1
Type: Logical
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: .TRUE.
Selects the luni-solar gravitational perturbation.
Dimensions: 1
Type: I
Units: n / a
Default: 0
Selects the size of geopotential model to be used. The requested zonal coefficients are input via JEARTH.
Dimensions: 1
Type: Integer
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: 4
The propagation step size as an integral number of orbits. Values are allowed only ranging from 1 to 10 .
Dimensions: 1
Type: Logical
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: .TRUE.
If MAKE_BIAS_FILE = .TRUE . and DRAG_ERROR_MODEL is different from 'FILE', the drag biases will be written to NEWBIASFILE.
MASS
Dimensions: 1
Type: DP
Units: $\quad \mathrm{kg}$
Default: 0.0
The mass of the satellite in kilograms.
MU_EARTH
Dimensions: 1
Type: DP

NGTBIAS_DRAG Dimensions: 1
Type: I
Units: none
Default: 0
Namelist: \$GTBIAS, in file whose name is specified in GTBIASFILE.

Gives the number of elements in GTBIAS_DRAG.

NSITES

NUMDAY

ODAYS

ODEVICE
$\begin{array}{ll}\text { Dimensions: } & 1 \\ \text { Type: } & \text { I } \\ \text { Units: } & \text { n/a } \\ \text { Default: } & 0\end{array}$
Size of solar and geomagnetic data and error model arrays FLX, DFLX, FLXBAR, DFLXBAR, KP, and DKP.

Dimensions: 1
Type: I
Units: days
Default: DAYS
Length of the y-axis on the EZPLOT output file. Only used when PLOT = .TRUE.

Dimensions: 1
Type: \quad C 12
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: '/IMPRESS'
Output device for EZPLOT output file. Only used when PLOT = .TRUE. Any device which is acceptable to PGPLOT may be used.
OFILE
ORBIT
ORBITS
PITCH

Dimensions: 1
Type: \quad C*80
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: 'OUTPUT.LIS'
Name of the standard GTARG output file.
Dimensions: 6
Type: DP
Units: km, degrees
Default: all 0.0
The input keplerian state vector, valid at DATE.
ORBIT(1) is the semi-major axis a in km .
ORBIT(2) is the eccentricity e.
ORBIT(3) is the inclination i in degrees.
ORBIT (4) is the right ascension of ascending node Ω in degrees.
ORBIT(5) is the argument of perigee ω in degrees.
ORBIT(6) is mean anomaly M in degrees.
ORBITS

PITCH

PLOTBOOST

Dimensions: 1
Type: logical
Units: n/a
Default: .TRUE.
If PLOT = . TRUE . then GTARG will generate an EZPLOT input file ZFILE with the ground track.
Dimensions: 1
Type: Integer
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: none
ORBITS gives the number of reference equator crossings in the array XINGS.

Dimensions: 1
Type: DP
Units: degrees
Default: 0°
Pitch angle at which the maneuver is to be applied. PITCH $=0$ and YAW = 0 corresponds to along-track with a positive $\Delta \mathrm{V}$ along the velocity direction.
有

Dimensions: 1
Type: logical

Units:	n / a
Default:	.FALSE.

If PLOTBOOST $=$. TRUE. and PLOT $=$.TRUE . then the extra da/dt in DSMADT_DATA will be plotted along with the ground track in the EZPLOT output file ZFILE.

PLOT_COMPONENTS Dimensions: 1
Type: logical
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: none
If PLOT_COMPONENTS = .TRUE . then an EZPLOT input file ZFILE2 showing the error envelope for each component will be generated. The primary EZPLOT file ZFILE only contains the RSS envelope.

PLOTCYCLE

PLOTDATE
Dimensions: 1
Type: logical
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: .TRUE.
If PLOTCYCLE $=$. TRUE. and PLOT $=$.TRUE . then the cycle boundaries will be annotated in the EZPLOT output file ZFILE.

Dimensions: 1

Type:	$C^{*} 25$
Units:	n/a
Default:	DATE

Specifies the origin of the y axis in standard format (DD-
MMM-YYYY hh:mm:ss.ffff) for the EZPLOT output file.
Only valid when PLOT $=$.TRUE .
PLOTSITE
Dimensions: 1
Type: logical
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: .FALSE .

If PLOTSITE=. TRUE ., then the site overflight offsets will be plotted on the EZPLOT output. Also requires PLOT $=$.TRUE . and SITES = .TRUE .

Dimensions: 1
Type: \quad C 50
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: none

	Title of the EZPLOT graph. REV Dimensions: Type: Units: Default:\quadInteger orbits
	1
Revolution number of the input state ORBIT. Used to label	
the output report file.	

These three parameters are the weight factors which determine the contribution of each error source in standard deviations. They are used to weight the propagated error sources to determine the width of the error envelope in ground track units. The uncertainties due to all error models are root-sum-squared in ground track units $(\Delta \lambda)$ as

$$
\Delta \lambda=\sqrt{\kappa_{d a l d t}^{2} \Delta \lambda_{d a l d t}^{2}+\kappa_{\Delta V \& O D}^{2}\left(\Delta \lambda_{\Delta V}^{2}+\Delta \lambda_{O D}^{2}\right)+\kappa_{D r a g}^{2} \Delta \lambda_{D r a g}^{2}} .
$$

Figure 4.2.
Demonstration of confidence levels for error sources which are represented as random variables with a standard normal distribution. The confidence level
\mathbf{A} and scale factor \mathbf{k} are related by $A=\frac{1}{\sqrt{2 \pi}} \int_{-\kappa}^{K} e^{-z^{2} / 2} d z$.

SIGMA_SF_BOOST is $\kappa_{d a l d t}$, which gives the contribution due to the unmodeled forces in DSMADT_DATA.

SIGMA_SF_DRAG is $\kappa_{\text {drag }}$, which gives the contribution due to drag prediction errors, either from DFLX, DFLXBAR, and DKP, or from GTBIAS_DRAG .

SIGMA_SF_DRAG is $\kappa_{\Delta V \& O D}$, gives the contribution due to maneuver execution errors (derived from SIGMA_DV_FIXED and SIGMA_DV_PROP) and orbit determination uncertainty (derived from DELTA_A_OD).

The values of κ are typically based upon an assumption of error sources which can be represented as random variables with a standard normal distribution function and are derived from the desired level of confidence which the error envelope is meant to represent. The relationship between the scale factors and confidence levels is illustrated in figure 4.2 and typical values are shown in figures 4.3 and 4.4.

Figure 4.3.
Relationship between scale factor and confidence level.

Figure 4.4.
Relationship between scale factor and confidence level for high confidence levels.

SITE_LOC
Dimensions: (2,NSITES) where NSITES ≤ 10
Type: DP
Units: degrees
Default: 239.31919, 34.4691, 12.32054, 35.54649,
remainder all 0.0 d 0
If SITES = .TRUE . then the longitudinal overflight distances of the sites whose locations are give by SITE_LOC will be calculated. This data will also be plotted if PLOTSITE $=$.TRUE ., and PLOT $=$.TRUE.

SITE_LOC $(1, I)$ gives the longitude of site I in degrees.
SITE_LOC(2,I) gives the latitude of site I in degrees. The type of coordinates are specified by SITE_LOC_TYPE(I).

Dimensions: 1
Type: \quad C*10
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: 'GEODETIC'
Specifies the type of coordinates which are give in
SITE_LOC. Options are 'GEODETIC' and 'GEOCENTRIC'.

SITE_NAME
Dimensions: NSITES where NSITES ≤ 10
Type: $\quad C^{*} 10$
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: 'NASA', 'CNES', remainder all ' '
SITE_NAME(I) gives the name of the site whose location is give in SITE_LOC(I).

SITE_NODE
Dimensions: NSITES, where NSITES ≤ 10
Type: I
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: $\quad 22,111$, remainder all 0
SITE_NODE(I) gives the rev \# (in XINGS) of the orbit with an ascending node just prior to the overflight of sight I.

SITE_STRAT	Dimensions: Type: Units: Default:
Determines the strategy to be used in calculating the longitudinal site overflight distances. The propagation used from the node to the verification site is independent of the propagation used by the rest of GTARG, and hence the input to this parameter will only affect the site offset calculation.	
	SITE_STRAT = 'KEPLER' means that a Keplerian
approximation will be used to propagate the orbit from	
the node to the site. This is faster but less accurate than	

[^5]Units: $\quad n / a$
Default: 'RUNOUT'
Selects the targeting strategy.
STRAT = 'RUNOUT' - ground track propagation without targeting.

STRAT = 'LONG' - longitude targeting. The size of the control band is given by BOUNDS.

STRAT $=$ 'EAST' - time targeting to the eastern boundary. The size of the control band is given by BOUNDS and the desired time of the next maneuver by TIMTGT.

STRAT = 'WEST' - time targeting to the western boundary. The size of the control band is given by BOUNDS and the desired time of the next maneuver by TIMTGT.

TARGET_STRAT
Dimensions: 1
Type: $\quad C^{*} 8$
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: 'UNBIASED'
For STRAT = 'LONG', 'WEST', 'EAST',selects which ground track to apply the targeting to.
TARGET_STRAT is ignored if STRAT = 'RUNOUT'
TARGET_STRAT = 'UNBIASED'- the unbiased ground track is used.

TARGET_STRAT = 'EASTGT' - the eastern error envelope is used.

TARGET_STRAT = 'WESTGT'- the eastern error envelope is used.

Figure 4.5
Use of TARGET_STRAT in longitude targeting. The control band is shaded.

TEXT

TERMINAL

Dimensions: 1
Type: $\quad C^{*} 80$
Units: $\quad \mathrm{n} / \mathrm{a}$
Default
Namelist: FLXKP
Text used for labeling solar flux data. Not used by this version of GTARG.

Dimensions: 1
Type: \quad C*10
Units: $\quad \mathrm{n} / \mathrm{a}$
Default: 'VT100'
If TERMINAL = 'VT100' the screen attributes of the VT-series terminals are utilized for the screen output. Otherwise, no special attributes are assumed.

Dimensions: 1

Type:	$C^{*} 80$
Units:	n/a
Default:	1

Label to be printed on the first page of the output and the top of the screen. If TESTCASE is not specified or TESTCASE = '?' then the input in PLOTTITLE will be used, it specified.

TIMFUZ
Dimensions: 1

Type:	DP
Units:	Days
Default:	1.0

For either time targeting strategy, TIMFUZ gives the accuracy requirement for meeting the target date specified by TIMTGT (see figure 4.6)

TIMTGT
Dimensions: 1
Type: DP
Units: Days
Default: 0.0
Number of days for time targeting (see figure 4.6).
Figure 4.6.
Definition of TIMFUZ and TIMTGT shown the success criterion for time targeting. The control band is shaded.


```
VMATAB
WATCH

Dimensions: 1
Type: Logical
Units: \(\quad\) n/a
Default: .FALSE.
Monitor the calculations interactively on the terminal. Note: Set WATCH = . FALSE . when submitting batch jobs.

Dimensions: 1
Type: Logical
Units: \(\quad\) n/a
Default: .FALSE.
Save the intermediate iterations during the targeting runs.
Dimensions: 1:200, selected by ORBITS
Type: DP
Units: degrees
Default: all 0.0
The equator crossing longitudes in degrees, of the reference grid. The crossings are assumed to be in timeorder through a cycle.

Dimensions: 1
Type: DP
Units: degrees
Default: \(0^{\circ}\)

Yaw angle at which the maneuver is to be applied. PITCH \(=0\) and YAW = 0 corresponds to along-track with a positive \(\Delta \mathrm{V}\) along the velocity direction.

\section*{ZFILE}

ZFILE2

Dimensions: 1
Type: \(\quad\) C*80
Units: \(\quad \mathrm{n} / \mathrm{a}\)
Default: 'GROUND_TRACK.PLOT'
The standard EZPLOT input file created when PLOT = .TRUE .

Dimensions: 1
Type: \(\quad\) C* 80
Units: \(\quad \mathrm{n} / \mathrm{a}\)
Default: 'BIAS_BREAKDOWN.PLOT'
The standard EZPLOT input file created when PLOT_COMPONENTS = .TRUE.

\section*{5. Sample GTARG Output}

When GTARG is executed, the initialization message shown in figure 5.1 will be displayed on the screen.

Figure 5.1.
GTARG Initialization Message.
```

@GTARG TEST.DAT FLUX.TEST

* GTARG Ground Track Targeting Program Ver. 5.2 created 3-MAR-93 18:20:56 *
**
* Copyright (C) 1993, California Institute of Technology.
* U.S. Government Sponsorship under NASA Contract NAS7-918 is acknowledged.*

Reading input namelist data ...
Initializing ...

```

If TERMINAL = 'VT100', following initialization, the screen will be cleared and the display will look as shown in figure 5.2. If WATCH \(=\).TRUE . , the parameters under the label Current Iteration will be updated continuously as they are being computed. If WATCH \(=\).FALSE ., the section Current Iteration will be left blank.

Figure 5.2.

\section*{GTARG Screen Display.}


After the run completes, the screen will again be cleared and the summary message shown in figure 5.3 will be displayed.

Figure 5.3. GTARG Completion Message.


Every GTARG run will produce a standard output listing file. A typical output file, EXAMPLE. REPORT, is shown in figure 5.4.. The namelist input EXAMPLE. DAT used for this run is given in figure 5.5. The flux data file GFLUX. NML is given in figure 5.6. Portions of these files were omitted for brevity where the nature or format of the data was completely clear. The output plot file is in the format of an EZPLOT namelist file. (see Appendix A). Since EZPLOT is not part of the GTARG software release, the EZPLOT output is not shown. However, it is straightforward to plot the results of a GTARG run using any standard spreadsheet or graphics program. An example of this using the data in figure 4 is shown in figure 5.7.

\section*{6. Software Installation and Modification}

\subsection*{6.1. Installation of GTARG}

To execute GTARG using the runstream in chapter 3, the following executable file is required:

\section*{GTARG.EXE}

With the exception of the two user-defined data files described in chapters 3 through 5, (the input namelist file and the solar/geomagnetic data file) no other files are required to run GTARG. In lieu of creating the runstream file of figure 3.1, the following files may be installed:

GTARG.COM
GTARGJOB.COM
Instructions for executing these files may be obtained by entering the command
@GTARG ?
The sample GTARG.COM file will prompt for any missing parameters and then executed GTARG. The second file, GTARGJOB.COM, is executed by GTARG.COM. Sample data files are

\section*{EXAMPLE.FLUX \\ EXAMPLE.DAT}

These data files correspond to the files illustrated in figures 5.5 and 5.6.
To interpret the plotting files produced by GTARG requires the files

> EZPLOT.COM
> EZPLOT.EXE

Instructions for the execution of EZPLOT are given in chapter 7. EZPLOT requires the presence of the PGPLOT real-time graphics library. \({ }^{1}\)

\footnotetext{
\({ }^{1}\) PGPLOT is written by the California Institute of Technology Astronomy Department. It is not included in the COSMIC GTARG package. PGPLOT is described by Pearson, 1989. If PGPLOT is not available, none of the functionality of GTARG will be lost. Since all of the ground track data which is included in the EZPLOT output file is also included in the GTARG report file in a tabular form, the data may always be plotted in any standard spreadsheet. The user may also write a graphics interpreter for whatever system is available using the information in chapter 7, and then plot the EZPLOT files directly.
}

All of the remaining files on the COSMIC tape contain the source code and command files for re-compilation and re-linkage of GTARG, and are not required unless the software is being modified.

\subsection*{6.2. Compiling and Linking GTARG}

To transport GTARG to another platform or to supply a user-defined density function, the executable will need to be rebuilt. The GTARG executable can be rebuilt from the original VAX-FORTRAN by executing command procedure MAKEGTARG.COM. An object library GTARG. OLB must exist for MAKEGTARG. COM to run without error. This library can be created from any .OBJ module in GTARG. If no .OBJ files are available, compile GTARG first and then create the library:
\$FOR GTARG
\$LIB/CREATE GTARG GTARG
\$@MAKEGTARG ALL
To compile all modules in GTARG and link the executable,
\$@MAKEGTARG ALL
To compile only a single module and then re-link the executable,
\$@MAKEGTARG module_name
To compile without linking,
\$@MAKEGTARG module_name NOLINK
To transport to another platform which does not support VAX-FORTRAN, substantial code modification may be required.

\subsection*{6.3. User-Defined Density Function}

The function USER_DENSITY contains a template for the user-supplied density function. Since the density is applied at most once per orbit, function USER_DENSITY must provide an orbital average density in \(\mathrm{kg} / \mathrm{km}^{3}\). The correct calling sequence is
```

DOUBLE PRECISION RHO, USER_DENSITY, TIME, FLUX, FLUXBAR, KP
EXTERNAL USER_DENSITY
RHO = USER_DENSITY (TIME, FLUX, FLUXBAR, KP)

```
where the input parameters are:
TIME \(=\) the fraction of a year of the current epoch, e.g., Jan. \(1=0\), Dec \(31=\) 1.0;

FLUX = F10.7 solar flux;
FLUXBAR = 81 day average of F10.7 solar flux;
\(K P=\) geomagnetic index.
The value of the function is the density in \(\mathrm{kg} / \mathrm{km}^{3}\).
Once the code has been created it can be added to GTARG by following the procedure in section 6.2.

\subsection*{6.4. Software Structure}

The software structure is summarized in tables 6.1 and 6.2 on the following pages. These tables are only intended to provided an overview of the software structure. Detailed descriptions of the individual modules and the interface formats are given in the comments to the code.

Table 6.1.
GTARG Subroutines.
\begin{tabular}{|c|c|c|}
\hline Subroutine & Calling Module & Description \\
\hline CAR2KEP & DOMNVR & Coverts Cartesian state vector to Keplerian elements. \\
\hline CHECKDATES & GTARG & Checks and formats the contents of the array DSMADT_DATES. \\
\hline CHECK_SUCCESS & TGTGT & Formats call to CHKSUC. \\
\hline CHKDV & TGTGT & Restricts range of \(\Delta \mathrm{V}\) that bounds target. \\
\hline CHKSUC & CHECK_SUCCESS & Determines if ground track has been successfully targeted. \\
\hline CLEAR_SCREEN & \[
\begin{gathered}
\text { FIND_CLASS } \\
\text { TGTGT }
\end{gathered}
\] & Clears the screen. \\
\hline COMPGT & TGTGT & Computes the ground track for a specified duration of time. Drives the propagation algorithm. \\
\hline COPY84 & TGTGT & Copies an array of double precision data into a single precision array. \\
\hline COPY88 & TGTGT & Copies an array of double precision data. \\
\hline CRMGET & FIRSTGUESS PROP & Recovers the density at a given time. Entry point to subroutine CRM. \\
\hline CRMINI & GTARG & Initializes the density array. Entry point to subroutine CRM. \\
\hline CROSS & CAR2KEP DOMNVR & Calculates vector cross product. \\
\hline DISPLAY_LIMITS & TGTGT & Displays the results of a targeting iteration on the screen. \\
\hline DOMNVR & TGTGT & Adds \(\Delta \mathrm{V}\) to the state vector. \\
\hline DVEAST & FNDDV & Compute \(\Delta \mathrm{V}\) for time targeting to the east. \\
\hline DVLONG & FNDDV & Computes \(\Delta \mathrm{V}\) for longitude targeting. \\
\hline DVMOVE & \begin{tabular}{l}
COMPGT \\
FIRSTGUESS MNODES TGTGT
\end{tabular} & Copies a state vector. \\
\hline DVWEST & FNDDV & Computes \(\Delta \mathrm{V}\) for time targeting to the west. \\
\hline FIND_CLASS & TGTGT & Classifies the ground track. \\
\hline FINDDATE & \[
\begin{aligned}
& \text { COMPGT } \\
& \text { PROP }
\end{aligned}
\] & Finds correct point for interpolation into DSMADT_DATA array based upon dates in DSMADT_DATES array. \\
\hline FNDCLS & FIND_CLASS & Classifies the ground track. \\
\hline FNDDV & TGTGT & Calculate the \(\Delta \mathrm{V}\) for the next iteration. \\
\hline
\end{tabular}

Table 6.1 (Page 2 of 2)
\begin{tabular}{|c|c|c|}
\hline Subroutine & Calling Module & Description \\
\hline FIRSTGUESS & TGTGT & Calculate the first guess at \(\Delta \mathrm{V}\). \\
\hline INIT_PARMS & GTARG & Initializes astrodynamic parameters. \\
\hline INTERP_DRAG_BIAS & COMPGT & Interpolates into drag bias array, when DRAG_BIAS_MODE = 'GT' \\
\hline INTERP_LINE & COMPGT & Linear interpolation. \\
\hline KEP2CAR & DOMNVR & Converts Keplerian elements into a Cartesian state vector. \\
\hline LUNORB & LSRGPJ & Calculates the lunar ephemeris. \\
\hline LSRGPB & LSRGPJ & Bulletin board used by LSRGPJ. \\
\hline & PROP & \\
\hline LSRGPJ & PROP & Orbit propagator. \\
\hline MNODES & COMPGT & Drives the orbit propagation a \\
\hline & FIRSTGUESS & specified number of nodes. \\
\hline NEWPAGE & GTARG & Creates a new page in the report file. \\
\hline & TGTGT & \\
\hline OPSFOR & GTARG & Opens a file read only. \\
\hline OPSFN & GTARG & Creates and opens a new file. \\
\hline ORB2U & KEP2CAR & Calculates argument of latitude from \\
\hline & MNODES & the state vector. \\
\hline ORB2LATLONG & COMPGT & Calculates the geodetic ground track latitude and longitude from the state vector. \\
\hline PROP & MNODES & Drives the orbit propagation a specified amount of time. \\
\hline SCREEN_HEADER & TGTGT & Writes the header to the screen during execution. \\
\hline SUMMRY & TGTGT & Writes a summary of the results to the output file. \\
\hline SUNORB & FIRSTGUESS & Calculates the solar ephemeris. \\
\hline & LSRGPJ PROP & \\
\hline UNIT & CAR2KEP & Converts a vector into a unit vector. \\
\hline & DOMNVR & \\
\hline UPCASE & GTARG & Converts a string into all upper case \\
\hline & LSRGPB & characters. \\
\hline VMSDATE & GTARG & Interface with VMS Date routine. \\
\hline WRITE_CURVE & WRITE_LABELED_CURVE TGTGT & Writes a curve to the EZPLOT file. \\
\hline WRITE_LABELED_CURVE & TGTGT & Writes an annotated curve to the EZPLOT file. \\
\hline WRITE_LIMITS & TGTGT & Writes ground track limits to the output file. \\
\hline WRITE_LINE & GTARG & Writes a line to the EZPLOT file. \\
\hline
\end{tabular}

Table 6.2.
GTARG Functions.
\begin{tabular}{|c|c|c|}
\hline Function Name & Calling Module & Description \\
\hline DCLOSE & FIRSTGUESS & \\
\hline & COMPGT & \\
\hline DCPVAL & JRSMPL2 & Evaluates polynomial. Interface \\
\hline & & emulates MATH77 function of same name. \\
\hline DOT & CAR2KEP & Vector dot product. \\
\hline GETCPU & GTARG & Determines CPU used by program. \\
\hline GOTO_STRING & COMPGT & Moves cursor to specified screen \\
\hline & TGTGT & coordinates. \\
\hline & SCREEN_HEADER & \\
\hline & GTARG & \\
\hline & DISPLAY_LIMITS & \\
\hline JRSMPL2 & CRMINIT & Evaluates the simplified \\
\hline & & approximation to the Jacchia-Roberts density model. \\
\hline LNKTIM & GTARG & Obtains the time at which the current \\
\hline & SCREEN_HEADER & program was linked. \\
\hline MA2EA & ORB2U & Converts mean anomaly to eccentric \\
\hline & ORBBP & anomaly. \\
\hline ORBBP & FIRSTGUESS & Calculates \(\beta^{\prime}\) angle from elements. \\
\hline & PROP & \\
\hline POLY & GTARG & Evaluates a polynomial to 5th degree. \\
\hline RNG360 & ORB2U & Limits an angle to the range \(0^{\circ}\) to \(360^{\circ}\). \\
\hline & GTARG & \\
\hline & FIRSTGUESS & \\
\hline & DOMNVR & \\
\hline & COMPGT & \\
\hline SETCPU & GTARG & Initializes CPU calculation. \\
\hline SIDANG & COMPGT & Calculates sidereal angle, i.e., right \\
\hline & FIRSTGUESS & ascension of Greenwich. \\
\hline USER_DENSITY & JRSMPL2 & Template for a user-supplied density function. \\
\hline VMAREA & FIRSTGUESS & Calculates area using the TOPEX / \\
\hline & PROP & POSEIDON variable mean area model. \\
\hline YESNO & GTARG & Converts a logical variable to the \\
\hline & & string YES (if true) or NO (false). \\
\hline YESNOSTRING & GTARG & Converts a logical variable to a string. \\
\hline
\end{tabular}

\section*{7. EZPLOT}

EZPLOT allows the user to draw a single frame with an arbitrary number of curves on it using PGPLOT. \({ }^{1}\) The format is

\section*{@EZPLOT namelist input file}

The namelist input file is composed of a single \$ZFRAME namelist (table 7.1) followed by an arbitrary number of \$ZLINE namelists (table 7.2). \$ZFRAME defines the plot parameters. Each \(\$\) ZLINE defines a curve, a line, or text on the plot.

Table 7.1
\$ZFRAME namelist
\begin{tabular}{|c|c|c|c|c|}
\hline Name & Type & Dim & Default Units & Description \\
\hline CH & R & 1 & . 75 & Character height of PGPLOT \({ }^{2}\) characters. \\
\hline CI & I & 1 & 2 & PGPLOT \({ }^{1}\) color index. \\
\hline DEVICE & C*12 & 1 & '/NULL' & \begin{tabular}{l}
PGPLOT \({ }^{1}\) plot device. \\
'/IMPRESS' - imagen printer \\
'/TEK ' - tektronics graphics monitor \\
'/PS' - postscript printer
\end{tabular} \\
\hline OFILE & C*12 & 1 & 'EZPLOT.LIS' & EZPLOT output message file. \\
\hline SUMMARY & L & 1 & T & If true, a summary of what EZPLOT does is written to OFILE. \\
\hline TITLE & C*100 & 1 & ' ' & Title of plot. \\
\hline VPORT & R & 4 & 4*-1 in & PGPLOT \({ }^{1}\) view port coordinates in inches. If not specified, a "standard" size view port is used. \\
\hline WIND0 & R & 4 & 4*0 & PGPLOT \({ }^{1}\) window boundaries in world coordinates. \\
\hline XOPT & C*12 & 1 & 'BCNST' & X-axis options for call to PGBOX. \({ }^{1}\) \\
\hline XSUB & I & 1 & 0 & Number of subdivisions between major ticks on the \(x\) axis. If \(\mathrm{XSUB}=0, \mathrm{PGPLOT}^{1}\) will calculate this. \\
\hline XTICK & R & 1 & 0 & Distance between ticks on the \(x\)-axis. If XTICK \(=0\), PGPLOT \({ }^{1}\) will calculate. \\
\hline XTITLE & C*100 & 1 & ' ' & X -axis title. \\
\hline YOPT & C*12 & 1 & 'BCNST' & Y-axis options for call to PGBOX. \({ }^{1}\) \\
\hline YSUB & I & 1 & 0 & Number of subdivisions between major ticks on the yaxis. If \(\mathrm{YSUB}=0, \mathrm{PGPLOT}^{1}\) will calculate this. \\
\hline YTICK & R & 1 & 0 & Distance between ticks on the \(y\)-axis. If YTICK \(=0\), PGPLOT \({ }^{1}\) will calculate. \\
\hline YTITLE & C*100 & 1 & ' ' & Y-axis title. \\
\hline
\end{tabular}

Valid output devices are described in detail in the PGPLOT users guide. \({ }^{1}\)
If DEVICE \(=\) '/TEK', then the plot will be automatically generated on the screen. A a tektronics terminal or a terminal with tektronics graphics emulation is required.
\({ }^{1}\) Cannell, 1990.
\({ }^{2}\) Pearson, 1989.

If DEVICE = '/PS', EZPLOT will generate a postscript file PGPLOT.PSPLOT. If DEVICE = '/IMPRESS', EZPLOT will generate an Imagen file PGPLOT.IMPLOT. These files may then be printed directly to the appropriate graphics printer.

Table 7.2
\$ZLINE Namelist
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & Type & Dim & Default & Units & Description \\
\hline ANGLE & R & 1 & 0 & deg & Angle at which to write TEXT, measured counterclockwise from the \(x\)-axis. \\
\hline CH & R & 1 & . 75 & & PGPLOT \({ }^{1}\) character height for TEXT. \\
\hline CI & I & 1 & 2 & & PGPLOT \({ }^{1}\) color index for line and for TEXT. \\
\hline FJUST & R & 1 & 0 & & Horizontal justification for TEXT. \(0.0=\) left justified; \(0.5=\) centered; \(1.0=\) right justified. \\
\hline KX & DP & 1 & 1 & & Scale the X data by a scale constant. \\
\hline KY & DP & 1 & 1 & & Scale the Y data by a scale constant. \\
\hline NPTS & I & 1 & 0 & & Number of data points in \(X\) and \(Y\) arrays. \\
\hline STYLE & I & 1 & 1 & & PGPLOT \({ }^{1}\) line style. \(0=\) no line, just plot points \\
\hline & & & & & 1 = ------------------------------- \\
\hline & & & & & \[
\begin{aligned}
& 2=- \text { - - - - - - - - - - } \\
& 3=-. .-. ~ .-. ~ . ~ . ~
\end{aligned}
\] \\
\hline & & & & & \(4=\ldots . .\). \\
\hline SYMBOL & I & 1 & -2 & & 5 = - . . . - . . . - . . . - . . Graphics symbol to plot at each point \((X, Y)\) \\
\hline TEXT & C*100 & 1 & ' ' & & Text to be written at (XTXT, YTXT). \\
\hline TX & DP & 1 & 0 & & Translate the x data by a scalar after multiplying by KX. \\
\hline TY & DP & 1 & 0 & & Translate the \(y\) data by a scalar after multiplying by KY. \\
\hline \(X\) & DP & NPTS & all 0 & & X -axis data array in world coordinates. \\
\hline XTXT & R & 1 & 0 & & X-coordinates of text \\
\hline Y & DP & NPTS & all 0 & & Y-axis data array in world coordinates \\
\hline YTXT & R & 1 & 0 & & Y-coordinates of text \\
\hline
\end{tabular}
\({ }^{1}\) Pearson, 1989.

\section*{References}

Bhat, R.S. , Frauenholz, R. B., and Cannell, P. E., "TOPEX/POSEIDON Orbit Maintenance Maneuver Design," AAS 89-408, AAS/AIAA Astrodynamics Specialists Conference, Stowe, VT, August 7-10, 1989.
Bhat R. S., "TOPEX/POSEIDON Orbit Acquisition Maneuver Design," AAS 91-514, 1991 AAS/AIAA Astrodynamics Specialist Conference, Durango, Colorado, August 1922, 1991.

Cannell, Eric., Program EZPLOT, in-line documentation, April 4, 1990.
Carlisle, George, A. DiCicco, H. Harris, A. Salama, M. Vincent, TOPEX/Poseidon Project Mission Plan, Jet Propulsion Laboratory, JPL D-6862, rev. C, Aug. 1991 (Internal Document).

Cook, G. E., Perturbations of Near-Circular Orbits by Earth's Gravitational Potential, Royal Aircraft Establishment Technical Report \#65252, Ministry of Aviation, Farnborough Hants, England, 1965.
Cutting, E., Born, G.H., and Frautnick, J.C., "Orbit Analysis for SEASAT," J. Astronautical Sciences, 24, pp. 55-90, Jan-March 1976.
Ekelund, J.E., Sunseri, R.F., and Collier, J.B., DPTRAJ/ODP User's Reference Manual, Jet Propulsion Laboratory, JPL D-263, Oct. 1991 (Internal Document).
Escobal, Pedro Ramon, Methods of Orbit Determination, New York: Krieger, 1983.
Frauenholz, R. B., and Shapiro, B.E., "The Role of Predicted Solar Activity in TOPEX/POSEIDON Orbit Maintenance Maneuver Design," AAS 91-515, AAS/AIAA Astrodynamics Specialists Conference, Durango, CO, August 19-22, 1991.
Groves, G. V. "Motion of a Satellite in the Earth's Gravitational Field," Proc. Roy. Soc. 254, pp. 48-65, 1960.
Guinn, J.R., "Short Period Gravitational Perturbations for Conversion Between Osculating and Mean Orbit Elements," AAS 91-430, AAS/AIAA Astrodynamics Specialists Conference, Durango, CO, August 19-22, 1991.
Kaula, William M., "Development of the Lunar and Solar Disturbing Function for a Close Satellite," Astro. J., 67:3, pp. 300-303, June 1962.
Kozai, Y., "The Motion of a Close Earth Satellite," Astro. J., 64, pp. 367-377, Nov. 1959.
Long, A.C., Capellari, J.O., Velez, C.E., and Fuchs, A.J., Goddard Trajectory Determination System (GTDS) Mathematical Theory, Revision 1, Goddard Space Flight Center Flight Dynamics Division FDD/552-89/001 and Computer Sciences Corporation Technical Report CSC/TR-89/6001, July 1989.
Merson, R.H., The Dynamic Model of PROP, A Computer Program for the Refinement of the Orbital Parameters of an Earth Satellite, Royal Aircraft Establishment, Technical Report \#66255, Ministry of Aviation, Farnborough Hants, England, Aug. 1966.

Pearson, T.J., PGPLOT Graphics Subroutine Library (Users Manual), Jet Propulsion Laboratory, June 1989 (Internal Document).

Roberts, C., "An Analytical Model for Upper Atmosphere Densities Based upon Jacchia's 1970 Models," Celestial Mechanics, 4, pp. 368-377, 1971.

Shapiro, B.E., TOPEX/POSEIDON Repeat Orbit and Reference Grid Definition, Jet Propulsion Laboratory Interoffice Memorandum No. 314.5-1642, June 22, 1992 (Internal Document).
Shapiro, B.E.: 1993A, GTARG Error Models, Jet Propulsion Laboratory Interoffice Memorandum No. 314.5-1691, April 22, 1993 (Internal Document).
Shapiro, B.E.: 1993B, Prediction of Ground Tracks at Verification Sites, Jet Propulsion Laboratory, Interoffice Memorandum No. 314.5-1693, May 5, 1993 (Internal Document).

Shapiro, B.E. and Bhat, R. S., "GTARG - The TOPEX/POSEIDON Ground Track Maintenance Maneuver Targeting Program," AIAA 93-1129, AIAA Aerospace Design Conference, Irvine, CA, Feb. 16-19 1993.
Spier, Gerd W., Design and Implementation of Models for the Double Precision Trajectory Program (DPTRAJ), Jet Propulsion Laboratory JPL D-5901, April 1989 (Internal Document).
Squier, D. and Byers, K., Goddard Trajectory Determination System (GTDS) User's Guide, Revision 2, Computer Sciences Corporation Technical Report, CSC/SD-851/6738, Dec. 1987.

Vincent, M.A., "The Inclusion of Higher Degree and Order Gravity Terms in the Design of a Repeat Ground Track," AIAA-90-2899-CP, AIAA/AAS Astrodynamics Conference, Portland, Oregon, Aug. 1990.```


[^0]:    ${ }^{1}$ Shapiro, 1993A.

[^1]:    ${ }^{1}$ Shapiro, 1993B.

[^2]:    ${ }^{1}$ Pearson, 1989.

[^3]:    ${ }^{1}$ Shapiro, 1993A.

[^4]:    ${ }^{1}$ Shapiro, 1993A.

[^5]:    ${ }^{1}$ Pearson, 1989.

