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SUBJECT GTARG ERROR MODELS 
 
 
GTARG is the TOPEX/POSEIDON ground track maintenance maneuver targeting 
program.  It combines orbit prediction and targeting algorithms to design maneuvers 
which ensure that the ground track is maintained within a ±1 km. wide control band 
about an ≈9.9 day repeat pattern.  Error models include the uncertainties due to orbit 
determination, maneuver execution errrors, drag unpredictability, and the knowledge of 
unspecified along-track satellite-fixed forces ("boost/decay" forces).  These error models 
are used to define an envelope of uncertainty about the predicted ground track with a 
desired confidence level, usually 95%. 
 
This memorandum summarizes the error models as they are implemented in GTARG. 
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Definition of the Error Envelope 
 
GTARG calculates the error envelope as  
 

!"# t( ) = $"V ,OD
2 !"# ,"V t( )[ ]

2
+ !"# ,OD t( )[ ]

2% & 
' 

( ) 
* 

+ $Drag
2 !"# ,Drag t( )[ ]

2
+$ da dt

2 !"# ,da dt t( )[ ]
2

 (1) 

 
where 
 

!"# ,"V   = 1-σ uncertainty in ground track Δλ due to maneuver execution errors; 
!"# ,OD= 1-σ uncertainty in ground track Δλ due to orbit determination errors; 
!"# ,Drag  = 1-σ uncertainty in ground track Δλ due to drag prediction errors; 
!"# ,da dt  = 1-σ uncertainty in ground track Δλ due to "boost" prediction errors; 
!"V,OD  = scaling factor for maneuver execution and orbit determination errors; 
!Drag  = scaling factor for drag error; 
! da dt  = scaling factor for "boost/decay" error. 

 
The validity of equation (1) is contingent upon the assumptions that the four error 
sources are described by uncorrelated random variables.  An assumption of 
independence between the error sources is sufficient to prove that the variables are 
uncorrelated.  The scaling factors κ give contribution to the eror envelope of each error 
source in standard deviations.  The scale factors can be related to the confidence level by 
assuming that the error sources are distributed as random variables with a specified 
probability distribution.  Figure 1 shows the relationship between the confidence level 
and κ by assuming a normal distribution. Values of κ for various levels of confidence are 
shown in figures 2 and 3. 
 

Figure 1.  
Definition of confidence levels for error sources which are represented as random 

variables with a standard normal distiribution.   The confidence level A and scale factor 
k are related by A =

1

2!
e
"z2 2

dz
"#

#
$ . 

 

!" "

Area = Confidence Level

 
 
 
Input to GTARG is provided in the form of 1-σ uncertainties in the natural units of the 
error source, e.g.,  
 

!aOD  = uncertainty in semi-major axis due to orbit determination (1-σ); 
!"Vfixed   = uncertainty in maneuver magnitude due to fixed error (1-σ); 
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!"Vproportional "V  = fractional uncertainty in maneuver magnitude due to 
proportional error (1-σ); 

!F10.7  = uncertainty in solar flux (1-σ); 
! F10.7  = uncertainty in 81-day mean solar flux (1-σ); 
!Kp  = uncertainty in geomagnetic index; 

!
da

dt

" 

# 
$ 

% 

& 
'  = uncertainty in da/dt due to "boost/decay" errors. 

 
Figure 2. 

Relationship between scale factor and confidence level. 
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Figure 3 
Relationship between scale factor and confidence level for high confidence levels. 
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GTARG has the task of converting the errors from their natural units into ground track 
units, propagating them , and combining them together at a later time to determine the 
width of the error envelope. 
 
The following sections summarize the models which are used for each of the four error 
sources in GTARG.  While two of these (Maneuver implementation uncertainty and 
orbit determination uncertainty) have been described previously,1,2 they are included 
here for completeness. 
 
Maneuver Implementation Uncertainty 
 
The fixed and proportional errors are treated as independent random variables and 
added in quadrature to produce a total maneuver implementation uncertainty1, 
 

!"V = !"Vfixed
2

+ !"Vproportional
2  (2) 

 
While it would be legitimate to also include pointing errors in equation (2), they produce 
only very small errors.  Typical maneuver magnitudes range from 1 to 10 mm/sec.   The 
pointing error contributes !"vpointing "v # 1$ cos!%( ) < 0. 00035  for δθ<1.5˚, and <0.0014 for 
δθ<3˚.  Hence these errors are small enough to be ignored in GTARG. 
 
The total maneuver uncertainty is related to the ground track uncertainty at a later time t 
by1,2  
 

!"#

!"V
= $

3% et

V
& $16. 96 t days( )

meters

mm / sec
 (3) 

 
and hence the contribution of maneuver uncertainty to equation (1) is approximated as 
 

!"# ,"V t( ) $
%"#
%"V

& 

' 
( 

) 

* 
+ ,"V $ -

3.
e
t ,"V
V

 (4) 

 
 
Orbit Determination Uncertainty 
 
Orbit determination uncertainty is expressed as an error in the semi-major axis, as this 
has the dominant effect on the ground track.  The relationship between the two is1,2  
 

!"#

!a
$
3

2

%e

a
t $ 7.81 t days( )

meters

meter
 (5) 

 
and hence 
 

!"# ,OD $
%"#
%a
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' 
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* 
+ "aOD $

3,
e
t"a

OD

2a
 (6) 
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Accumulated Errors 
 
The error sources discussed so far, orbit determination uncertainty and maneuver 
execution error, are simple error sources.  They occur once, and are propagated as 
algebraic functions of time.  The remaining error sources, drag and "boost/decay" 
prediction uncertainties, occur at each propagation step.  Successive errors must be 
combined and propagated forward to the subsequent step.   
 
The manner of combining these errors depend on what assumptions are made for the 
correlation between the uncertainty predictions on different days.  For example, the 
behavior of the "boost/decay" error appears to be well described, and the daily 
uncertainties are nearly independent and hence can be treated as uncorrelated random 
variables.  The daily solar flux predictions, however, show high correlation, as 
illustrated in figure 4. 

 
Figure 4. 

Mean correlation between solar flux prediction error and the solar flux prediction error 
N days later.  The results are based upon the SESC 27-Day outlooks, repeated three 

times, for 1992 (53 prediction sets).  The 27-day periodicity is due to the solar rotation 
period.  The actual correlation (not the absolute value) is shown. 
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If X1 and X2 are two random variables with standard deviations σ1 and σ2, and means µ1 

and µ2,  then the standard deviation of the random variable  Y = X1 + X2  is given by 
 

!Y
2
= !1

2
+ !2

2
+ 2"!1!2  (7) 

 
where ρ is the correlation between X1 and X2 , defined as 

! =
1

"
1
"
2

E X1 # µ1( ) X2 #µ 2( )[ ] (7a) 

  
and ! " 1 .  The operator E(x) gives the expected value of the argument x.  The general 
result for the sum  Y = Xii=1

n

!  of n random variables Xi with standard deviations σi is 
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!Y
2
= ! i

2
+ 2 "ij!i! j

i=1

j

#
j=2

n

#
i=1

n

#  (8) 

 
where ρij is the correlation between Xi and Xj  (this is Theorem 5.4.1 of reference  [3]).  Let 
Xi  be the random variable describing the error introduced on orbit i and Xj  the random 
variable describing the error introduced on orbit j, where j>i.  Then Y is the random 
variable describing the total error accumulated and propagated from all earlier days on 
day j.  The total standard deviation σY given by equation (8) is the 1-σ error envelope 
due to the total contribution of all previous days errors on day j.    
 
Two extremes described by equation (7) correspond to ρ = 0 and ρ = 1, 
  

! 2 =
!1
2 + !2

2 , " = 0 (optimistic case)

!1 +!2( )
2
, " = 1 ( pessimistic case)

# 

$ 
% 

& % 
 (9) 

 
Errors add linearly in the pessimistic case, and in quadrature in the optimistic case. 
 
The general case (equation 8) as it applies to drag and "boost/decay" uncertainty has not 
been implemented in GTARG due to the computational complexity it would entail.  
However, both extreme cases (optimistic and pessimistic) have been implemented.   
 
 
Drag Prediction Uncertainty 
 
At each propagation step, three densities are calculated, 
 

!0 t( ) = ! F10.7 t( ),F10 .7 t( ),Kp t( )[ ] = nominal density at t; 

!Hi t( ) = ! F10 .7 t( ) + "F10.7 t( ),F10.7 t( ) + "F10 .7 t( ),Kp t( ) + "Kp t( )[ ]  = high density at t; 

!Lo t( ) = ! F10.7 t( ) " #F10.7 t( ),F10 .7 t( ) " #F10.7 t( ),Kp t( ) " #Kp t( )[ ] = low density at t. 
 

From the three density functions, three ground tracks are propagated simultaneously: 
 
!"Nom t( )  = ground track based on !0 t( ) . 
!"Hi t( )  = ground track based on  !Hi t( ). 
!"Lo t( )  = ground track based on  !Lo t( ) . 
 

and the following differences are calculated 
 

!East = "#Hi $ "# Nom  (10a) 
!West = "# Nom $ "# Lo  (10b) 

 
At this point, a choice of two error models are available: (a)an optimistic error model, in 
which the error sources at time step t+Δt are assumed to be completely independent of 
the error sources at time t, and (b) a pessimistic model in which the error sources are 
completely dependent. 
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Optimistic Drag Error Model.  Consider the high and low drag errors separately.  Let 
! i = ! ti( )  be the difference calculated by either of equations (10) at time ti , and let 
! i = !"# ,Drag t( )  be the accrued ground track error at that time due to the drag 
uncertainty.  Then the errors at each time step are assumed to add in quadrature with 
the accrued error from the previous time step: 
 

!1 = 0  (11a) 

! i+1 = "i+1 # "i( )2 + !i
2  (11b) 

 
Pessimistic Drag Error Model.  Again consider the high and low drag errors separately.  
Let ! i = ! ti( )  be the difference calculated by either of equations (10) at time ti , and let 
! i = !"# ,Drag t( )  be the accrued ground track error at that time due to the drag 
uncertainty.  Then the errors at each time step are assumed to add linearly with the 
accrued error from the previous time step: 
 

!1 = 0  (12a) 
! i+1 = "

i+1
#" i + !

i
= " i+1  (12b) 

 
 
"Boost/Decay" Prediction Uncertainty. 
 
GTARG implements four different error models for the "boost/decay" prediction 
uncertainy.  In order of complexity, they are 
 

(a) Constant error pessimisitic model.  An error of fixed magnitude is 
generated every day, which is assumed to be completely dependent 
on the previous day's error.  The ground track error is accrued 
linearly. 

(b) Constant error optimistic model.   An error of fixed magnitude is 
generated every day, which is assumed to be completely independent 
of the previous day's error.  The ground track error is accrued in 
quadrature. 

(c) Variable error pessimistic model.  A time varying error occurs, which 
is completely dependent on the previous daily error.  The ground 
track error is accrued linearly. 

(d) Variable error optimistic model.   A time varying error occurs, which 
is completely independent on the previous daily error.  The ground 
track error is accrued in quadrature. 

 

Each of the four models is described separately. 
 
 
 
 
Constant error pessimisitic model.   
 
A fixed error Δa is assumed to occur each orbit.  The ground track error due to the Δa 
from a single orbit will grow in the same manner as if it were orbit determination error, 
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as described by equation (6).  Ignoring the change in the period P, after the Nth orbit, a 
time t = NP has elapsed, and the total ground track error is just the sum of the 
propagated errors introduced originally during each of the earlier N orbits. Then 
 

 

!"# ,da dt t( ) =
3

2

$ e"a
a

iP

i=1

N %1
&

=
3

2

$ e"a
a
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( ) 
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+ , P

=
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4

$ e"a
a

t
t

P
% 1- 

. 
/ 

0 

1 
2 

' 

( ) 
* 

+ , 

3 3. 905"a meters

rev
( ) t days( )

t days( )

P days( )
%1

' 

( 
) 

* 

+ 
, 

' 

( 
) 

* 

+ 
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 (13) 

 
 Constant error optimistic model.    
 
Rather than adding the errors linearly, as in equation (13), they are added in quadrature.  
After N orbits, t ! tN " NP  and 
 

!"# ,da dt
2

t N( ) =
3

2

$
e

a
"a% 

& 
' 

( 

) 
* 

2

tN + ti( )2

i=1

N+1
, = K

2 "a( )2 t N + ti( )2

i=1

N +1
,  (14) 

 
where K = 3! e 2a .  Again, ignoring the change in period, ti = iP  and hence 
 

!"# ,da dt
2

t N( ) = K 2 P"a( )2 N $ i( )2

i=1

N$1

%

= K
2
P"a( )2 i

2

i=1

N$1

%

= K 2 P"a( )
2 N $1( )N 2N $ 1( )

6

 (15) 

 
The accrued error after a time t=NP  is then 
 

!"# ,da dt
2

t N( ) =
3

2

$
e
"a

a

t % P( )t 2 t % P( )

6P
 (16) 

 
 Variable error pessimistic model.   
 
Algorithm.  Let the propagation step size be M  orbits.  Ignoring the change in period, 
the time after N orbits is t = tN = NP .  Use the notation !N " !#$ ,da dt tN( ) .  Then the error 
envelope is calculated according to the following algorithm: 
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K =
3

2

!
e

a

"
1
= M

2
PK#a

1

"N +M = "N + M
2
PK#aN

$1 = 0

$
N +M = $

N
+ "

N
+ KP#a

N

1

2
M M % 1( )[ ]

 [Algorithm A] 

 
Derivation.  In this section, the notation !N  is used to indicate the 1-σ uncertainty in the 
ground track (i.e., !N " !#$ ,da dt tN( )  where t = tN = NP ). 
 
In this model, an error !ai  is introduced during the ith orbit.  The error from orbit i 
propagates according to equation (6).  The errors are assumed to add linearly.  This 
model is more complex; rather than being described by a simple analytic function of t, 
recursion relations must be used.  Let orbit i start at time ti.  At orbit N, the accrued error 
is 
 

!N = K "ai tN # ti( )
i=1

N#1

$  (17) 

 
where K = 3! e 2a .  One orbit later, at t N+1 = t N + P , 

 

!
N +1 = K "a

i
t
N
+ P # t

i( )
i=1

N

$

= K "ai tN + P # ti( )
i=1

N #1

$ + K"aN tN + P # tN( )

= K "ai tN # ti( )
i=1

N #1

$ + K "ai P

i=1

N#1

$ + K"aNP

= !
N
+ KP "a

i

i=1

N

$

= ! N + %N +1

 (18) 

 
In the final step of equation (18), the auxillary function δ has been defined, where 
 

!N = K "ai
i=1

N#1

$ = !N #1 + K"aN#1  (19) 

 
Equations (18) and (19) can be combined into the following algorithm: 

 
K =

3

2

!
e

a

"1 = 0

"i = " i#1 + KP$ai#1

%1 = 0

%i = $& i#1 + "i

  (20) 
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The algorithm expressed by equation (20) is not sufficient for implemention unless the 
propagation step size is precisely one orbit.  GTARG allows an integration step size of M 
orbits.  Equation (20) must be modified as follows.  After N+M orbits, using ti = iP  
 

!N +M = K "ai N + M # i( )
i=1

N+M #1

$ P

= K "a
i
N + M # i( )

i=1

N#1

$ P + K"a
N
P N + M # i( )

i=N

N+M#1

$

= K "ai N # i( )
i=1

N#1

$ P + K "aiM

i=1

N#1

$ P + K"aNP N + M( )
i=N

N+M#1

$ # K"aNP i

i=N

N +M #1

$

= !N + KMP "ai
i=1

N #1

$ + K"aNP N + M( ) N + M # 1( ) # N # 1( )[ ] # K"aNP i

i= N

N +M #1

$

(21) 

 
Expanding the final sum of equation (21) 

  

S1 ! i

i= N

N +M "1

# = i

i=1

N+M "1

# " i

i=1

N"1

# =
1

2
N "1 + M( ) N + M( ) " N "1( )N[ ]

=
1

2
N "1( )M + MN + M

2[ ]
= MN "

1

2
M +

1

2
M
2

 (22) 

 
Substituting (22) into (21) gives 
 

!N +M = !N + KMP "ai
i=1

N #1

$ + K"aNP N + M( )M # K"aNP MN #
1

2
M +

1

2
M
2[ ]

= !
N
+ KMP "a

i

i=1

N #1

$ +
1

2
K"a

N
P M

2 + M( )

= !N + KMP "ai
i=1

N

$ +
1

2
KP"aN M

2 + M( ) #KMP"aN

= !N + KMP "ai
i=1

N

$ + KP"aN
1

2
M M # 1( )[ ]

 (23) 

 
which reduces to equation (18) when M = 1.  Again defining the auxillary function 
 

!
N
= MPK "a

i

i=1

N

#

!N +M = MPK "ai
i=1

N +M

#

= !N + MPK "aN
i= N+1

N+M

#

= !N + M
2
PK"aN

 (24) 
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The general algorithm may be written as 
 

!
1
= M

2
PK"a

1

!N +M = !N + M
2
PK"aN

#
1
= 0

#N +M = "$N + !N + KP"aN
1

2
M M % 1( )[ ]

 [Algorithm (A)] (25) 

 
Note that algorithm (A) reduces to equations (20) when M = 1, and to equation (13) 
when M = 1  and Δa is a constant.. 

 
 
Variable error optimistic model.  
 
Algorithm.  Let the propagation step size be M orbits.  Ignoring the change in period, the 
time after N orbits is t = tN = NP .  Use the notation !N = !"# ,da dt tN( ) .  Then the error 
envelope is calculated according to the following algorithm: 
 

K =
3

2

!e
a

"1 = 0

#
1
= 0

$1 = 0

%N =
4

3
P
2
&aN( ) M2

'
3

8
M +

1

8
( )

2

$ N+M = $ N

2
+ K

2
M
2
+ 2M( )"N + M# N +%N[ ]

"
N+M = "

N
+ MP2 &a

N( )2

#
N+M = 2M"

N
+ #

N
+ M M '1( )P2 &a

N( )2

 [Algorithm B] 

 
Derivation.   In this section, the notation !N  is used to indicate the 1-σ uncertainty in the 
ground track (i.e., !N " !#$ ,da dt tN( )  where t = tN = NP ). 
 
In this model, an error !ai  is also introduced each orbit i.  The error from orbit i 
propagates according to equation (6).  The errors are assumed to add in quadrature.  
Equation (17) is modified as 
 

!N = K "ai( )2 t N # ti( )2

i=1

N#1

$  (26) 

 
where K = 3! e 2a .  One orbit later, at t N+1 = t N + P , 
 

!N +1 = K "ai( )2 t N + P # ti( )2

i=1

N

$  (27) 

 
Dividing by K and squaring both sides of the equation, 
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' t
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2

+ &a
i( )
2
2P t
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' t
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N'1

( + P
2 &a

i( )
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i=1
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(

=
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N

K
" 
# 

$ 
% 

2

+ 2P &ai( )2 tN ' ti( )
i=1
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( + P

2 &ai( )2

i=1

N

(

 (28) 

and hence 
 
!N +1 = ! N

2
+ K

2
" N+1 + # N +1( )  (29) 

 
where 
 

! N = P
2

"ai( )2

i=1

N #1

$ , N > 1  (30) 

! N = 2P "ai( )2 t N#1 # ti( )
i=1

N #2

$ , N > 2  (31) 

 
Recursion relations are also required to efficiently compute the auxillary functions of 
equations (30) and (31).  They are 
 

! N+1 = !N + P
2
"aN( )2  (32) 

! N+1 = 2P "ai( )
2

i=1

N#1

$ t N # ti( )

= 2P "a
i( )2

i=1

N#2

$ t
N
# t

N#1 + tN #1 # ti( ) + 2P "a
N #1( )2 t N # t

N#1( )

= 2P2 "a
i( )
2

i=1

N #2

$ + 2P "a
i( )
2
t
N #1 # ti( )

i=1

N #2

$ + 2P2 "a
N#1( )

2

= !
N
+ 2%

N

 (33) 

 
Combining equations (29), (32), and (33) the algorithm may be written as 
 

!
1
= 0

! N+1 = !N + P
2
"aN( )

2

#
1
= 0

# N+1 = # N + 2! N

$
1
= 0

$ N+1 = $N
2 + K 2 !N +1 + # N+1( )

  (34) 
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When the propagation step size is increased to M orbits but the errors are still being 
added each orbit, equation (34) must be suitably modified.  From equation (26), after 
N+M  orbits, the aggregate error function is  
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"ai( )2 tN # ti( )2

i=1

N#1

$

+ K 2P2 "a
i( )
2

N + M( )2 # 2i N + M( ) + i 2[ ]
i=N

N+M #1

$

= K
2
M
2
% N +!N

2
+ MK

2
& N+1 + MK

2
P
2
N + M( )2 "aN( )

2

# 2K2P2 "a
N( )2 N + M( ) i

i= N

N+M #1

$ + K 2P2 "a
N( )2 i

2

i=N

N +M #1

$

= !N
2 + K 2 M

2% N + M& N +1 + P
2 "aN( )

2
A{ }

 (35) 

 
where 

 
A = M N + M( )2 ! 2 N + M( )S1 + S2  (36) 

 
S1, is given by equation (22), and  
 

S
2
! i

2

i=N

N +M "1

# = i
2

i=1

N +M "1

# " i
2

i=1

N"1

#

=
1

6
N + M "1( ) N + M( ) 2N + 2M " 1( ) " N " 1( ) N( ) 2N " 1( )[ ]

=
1

6
2 N

3
+ 3N

2
M + 3NM

2
+ M

3( )$ 

% & " 3 N2 + 2MN + M
2( ) +

N + M " 2N3 + N
2 + 2N 2 " N ]

= N
2
M + NM

2
+
1

3
M
3 " MN "

1

2
M
2

+
1

6
M

 (37) 

 
The middle term in equation (36) can be expanded by means of equation (22), 

 
2 N + M( )S1 = 2 N + M( )

1

2
2NM + M

2
! M( )

= 2N 2M + 3NM2
! MN

 (38) 
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Substituting equations (37) and (38) into equation (36) gives 
 

A = MN
2

+ 2M
2
N + M

3 ! 2MN2 ! 3M 2
N + MN

+ MN
2

+ M
2
N +

1

3
M
3 ! MN ! 1

2
M
2

+
1

6
M

=
4

3
M M

2 ! 3

8
M +

1

8

" 

# 
$ 

% 

& 
' 

 (39) 

 
Combining equations (39) and (35) gives 
 

!N +M
2

= !N
2

+ K
2
M
2" N + M# N +1 + P

2 $aN( )2 4
3
M M

2 %
3

8
M +

1

8
( )& 

' 
( 
) 
 (40) 

 
which, as expected, reduces to equation (29) when M = 1. Substituting equation (33) into 
equation (40), 
 

!
N +M
2 = !

N

2 + K
2

M
2 + 2M( )"N + M#

N
+ P

2 $a
N( )2 4

3
M M

2 % 3

8
M +

1

8
( )& 

' 
( 
) 

= !N
2 + K

2
M
2 + 2M( )" N + M# N +*N[ ]

  (41) 

 
where the new function β has been defined as 
 

!N =
4

3
P
2
"aN( )2M M

2
#
3

8
M +

1

8
( )  (42) 

 
M-step recursion relations for the functions α and γ are also required for imple-
mentation.  Starting with α, 
 

! N+M = P
2 "ai( )

2

i=1

N+M #1

$

= P
2

"ai( )2

i=1

N#1

$ + P
2

"aN( )2

i= N

N +M #1

$

= !
N
+ MP2 "a

N( )
2

 (43) 

 
which satisfies the necessary requirement of reducing to equation (32) when M = 1.  
Similarly,  

!
N+M = 2P "a

i( )2

i=1

N +M #2

$ t
N+M #1 # ti( )

= 2P "ai( )
2

i =1

N #2

$ t N+M#1 # ti( ) + 2P "aN#1( )
2
t N+M#1 # tN #1( ) +

2P "a
N( )2

i= N

N +M #2

$ t
N+M #1 # ti( )

= S
3
+ 2MP2 "a

N #1( )
2
+ S

4

 (44) 

 
where S3 and S4 represent the two sums in the middle line of equation (44).  The first one 
is 
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S3 = 2P !ai( )
2

i=1

N "2

# t N+ M "1 " tN "1 + t N"1 " ti( )

= 2P !ai( )2

i=1

N "2

# MP + 2P !ai( )2

i=1

N"2

# tN"1 " ti( )

= 2MP
2 !ai( )

2

i=1

N"1

# " !aN"1( )
2

$ 

% 
& 

' 

( 
) + * N

= 2M+
N

+ *
N
" 2MP2 !a

N"1( )2

 (45) 

 
Referring to equation (22),  S4 can be simplified as 

 

S4 = 2P !aN( )
2

P N + M "1 " i( )
i= N

N+ M"2

#

= 2P2 !a
N( )
2

N + M "1( )
i= N

N+ M"2

# " i

i= N

N +M "2

#
$ 

% 
& 

' 

( 
) 

= 2P
2 !aN( )

2
M " 1( ) N + M " 1( ) " S1 " N + M " 1( )[ ]{ }

= 2P2 !a
N( )2 M " 1( ) N + M " 1( )[ ] " MN"

1

2

M+
1

2

M2 " N + M "1( )
$ 

% 
& 

' 

( 
) { }

= 2P2 !a
N( )2 1

2
M M " 1( ){ }

= M M "1( )P2 !a
N( )2

 (46) 

 
Substituting equations (45) and (46) into (44),  
 

! N+M = S3 + 2MP
2
"aN #1( )

2
+ S4

= 2M$N + ! N # 2MP
2
"aN#1( )2[ ] + 2MP2 "aN #1( )2 + M M # 1( )P2 "aN( )2

= 2M$N + ! N + M M #1( )P2 "aN( )2

 (47) 

 
Which reduces to equation (33) when M = 1. 

 
Equations (41), (42), (43) and (47) may be combined to give algorithm B, 

 
K =

3

2

!e
a

"1 = 0

#
1
= 0

$1 = 0

%N =
4

3
P
2
&aN( ) M2

'
3

8
M +

1

8
( )

2

$ N+M = $ N

2
+ K

2
M
2
+ 2M( )"N + M# N +%N[ ]

"
N+M = "

N
+ MP2 &a

N( )2

#
N+M = 2M"

N
+ #

N
+ M M '1( )P2 &a

N( )2

 (48) 
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